
GPIB User Manual for
Windows 95 and

Windows NT

GPIB User Manual for Windows 95/Windows NT
January 1998 Edition
Part Number 321819A-01
© Copyright 1998 National Instruments Corporation. All rights reserved.

49 70,
Internet Support
E-mail: support@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

Bulletin Board Support
BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,
Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635,
Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085, Sweden 08 730
Switzerland 056 200 51 51, Taiwan 02 377 1200, United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

Important Information

ng
enced
at do
ty
 free.

tside
pping

y
serves
. The
ble for

ccrues.
ol. The
 failure

 the
f third

nical,
,

ability

on the
g
itional
s injury
uments
ed to
Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programmi
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evid
by receipts or other documentation. National Instruments will, at its option, repair or replace software media th
not execute programming instructions if National Instruments receives notice of such defects during the warran
period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the ou
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shi
costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefull
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments re
the right to make changes to subsequent editions of this document without prior notice to holders of this edition
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be lia
any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE. CUSTOMERÕS RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR
NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT
THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the
liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action a
National Instruments shall not be liable for any delay in performance due to causes beyond its reasonable contr
warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by ownerõs
to follow the National Instruments installation, operation, or maintenance instructions; ownerõs modification of
product; ownerõs abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions o
parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mecha
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part
without the prior written consent of National Instruments Corporation.

Trademarks
HS488™, natinst.com™, NI-488™, NI-488.2™, NI-488.2M™, and TNT4882™C are trademarks of National
Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reli
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors
part of the user or application designer. Any use or application of National Instruments products for or involvin
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all trad
medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent seriou
or death should always continue to be used when National Instruments products are being used. National Instr
products are NOT intended to be a substitute for any form of established process, procedure, or equipment us
monitor or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corporation v GPIB User Manual
Contents
iii
v
v
vi
vi

-1
1

2
-2

6

3
3

About This Manual
How to Use the Manual Set .. x
Organization of This Manual .. xi
Conventions Used in This Manual.. x
Related Documentation... x
Customer Communication .. x

Chapter 1
Introduction

GPIB Overview...1
Talkers, Listeners, and Controllers...1-
Controller-In-Charge and System Controller ...1-1
GPIB Addressing..1-
Sending Messages across the GPIB ...1

Data Lines ..1-2
Handshake Lines ..1-3
Interface Management Lines..1-3

Setting up and Configuring Your System ..1-4
Controlling More Than One Board..1-5
Configuration Requirements ..1-5

GPIB Software for Windows 95...1-
GPIB Software for Windows 95 Components ...1-6

GPIB Driver and Driver Utilities ...1-6
16-Bit Windows Support Files...1-7
DOS Support Files ...1-7
Microsoft C/C++ Language Interface Files1-8
Borland C/C++ Language Interface Files ..1-8
Microsoft Visual Basic Language Interface Files............................1-8
Sample Application Files ...1-8

How the GPIB Software Works with Windows 95..1-9
Uninstalling the GPIB Hardware from Windows 951-10
Uninstalling the GPIB Software for Windows 95..1-12

GPIB Software for Windows NT..1-1
GPIB Software for Windows NT Components ..1-1

GPIB Driver and Driver Utilities ...1-13
for Windows 95/Windows NT

Contents

4

5

-2
4
-6
8
-10
4
16
-18
20

1

-4
4

7
8
9

DOS and 16-Bit Windows Support Files .. 1-14
Microsoft C/C++ Language Interface Files..................................... 1-14
Borland C/C++ Language Interface Files.. 1-1
Microsoft Visual Basic Language Interface Files 1-15
Sample Application Files... 1-1

How the GPIB Software Works with Windows NT 1-15
Unloading and Reloading the GPIB Driver for Windows NT....................... 1-17

Chapter 2
Application Examples

Example 1: Basic Communication ... 2
Example 2: Clearing and Triggering Devices .. 2-
Example 3: Asynchronous I/O ... 2
Example 4: End-of-String Mode .. 2-
Example 5: Service Requests ... 2
Example 6: Basic Communication with IEEE 488.2-Compliant Devices 2-1
Example 7: Serial Polls Using NI-488.2 Routines ... 2-
Example 8: Parallel Polls.. 2
Example 9: Non-Controller Example... 2-

Chapter 3
Developing Your Application

Choosing Your Programming Methodology .. 3-
Choosing a Method to Access the GPIB Driver .. 3-1

NI-488.2M Language Interfaces.. 3-1
Direct Entry Access ... 3-1

Choosing between NI-488 Functions and NI-488.2 Routines 3-2
Using NI-488 Functions: One Device for Each Board.................... 3-2
Using NI-488.2 Routines: Multiple Boards and/or

Multiple Devices... 3-3
Checking Status with Global Variables.. 3

Status Word (ibsta)... 3-
Error Variable (iberr) ... 3-6
Count Variables (ibcnt and ibcntl) ... 3-6

Using Win32 Interactive Control to Communicate with Devices................................ 3-6
Programming Model for NI-488 Applications ... 3-7

Items to Include.. 3-
NI-488 Program Shell .. 3-
NI-488 General Program Steps and Examples .. 3-

Step 1. Open a Device ... 3-9
Step 2. Clear the Device .. 3-9
GPIB User Manual for Windows 95/Windows NT vi © National Instruments Corporation

Contents

1
11
12
-13
3
3
4
4

15

5
6
6

9

0

-1
1
-2
-3
-
-4
-4
Step 3. Communicate with the Device...3-9
Step 4. Place the Device Offline before Exiting

Your Application...3-10
Programming Model for NI-488.2 Applications ..3-1

Items to Include ..3-
NI-488.2 Program Shell..3-
NI-488.2 General Program Steps and Examples..3

Step 1. Initialization ...3-1
Step 2. Determine the GPIB Address of Your Device.....................3-1
Step 3. Initialize the Device ...3-1
Step 4. Communicate with the Device...3-1
Step 5. Place the Device Offline before Exiting

Your Application...3-15
Language-Specific Programming Instructions ...3-

Microsoft Visual C/C++ (Version 2.0 or Higher) ..3-15
Borland C/C++ (Version 4.0 or Higher) ..3-1
Visual Basic (Version 4.0 or Higher) ...3-1
Direct Entry with C ..3-1

gpib-32.dll Exports...3-16
Directly Accessing the gpib-32.dll Exports3-17

Windows 95: Running Existing GPIB Applications ..3-1
Running Existing Win32 and Win16 GPIB Applications..............................3-19
Running Existing DOS GPIB Applications ...3-19

Windows NT: Running Existing GPIB Applications ...3-2
Running Existing Win32 and Win16 GPIB Applications..............................3-20
Running Existing DOS GPIB Applications ...3-20

Chapter 4
Debugging Your Application

NI Spy ...4-1
Global Status Variables ..4
Win32 Interactive Control ..4-
GPIB Error Codes...4
Configuration Errors ...4
Timing Errors..43
Communication Errors..4

Repeat Addressing..4
Termination Method...4-4

Other Errors ..4-4
© National Instruments Corporation vii GPIB User Manual for Windows 95/Windows NT

Contents

-2
2
3
3
3
-4

4
4
4
5
5
-
13
14

-1
-2
2

4

-11
12

12
13
3
4

Chapter 5
NI Spy Utility

Overview .. 5-1
Starting NI Spy ... 5
Using the NI Spy Online Help.. 5-
Locating Errors with NI Spy .. 5-
Viewing Properties for Recorded Calls.. 5-
Exiting NI Spy.. 5-
Performance Considerations... 5

Chapter 6
Win32 Interactive Control Utility

Overview .. 6-1
Getting Started with Win32 Interactive Control .. 6-1
Win32 Interactive Control Syntax.. 6-

Number Syntax .. 6-
String Syntax.. 6-
Address Syntax .. 6-

Win32 Interactive Control Commands... 6-
Status Word .. 613
Error Information.. 6-
Count Information .. 6-

Chapter 7
GPIB Programming Techniques

Termination of Data Transfers ... 7
High-Speed Data Transfers (HS488).. 7

Enabling HS488 ... 7-
System Configuration Effects on HS488 ... 7-3

Waiting for GPIB Conditions... 7-
Asynchronous Event Notification in Win32 GPIB Applications................................. 7-4

Calling the ibnotify Function ... 7-4
ibnotify Programming Example... 7-5

Writing Multithreaded Win32 GPIB Applications... 7-9
Device-Level Calls and Bus Management ... 7
Talker/Listener Applications .. 7-
Serial Polling .. 7-12

Service Requests from IEEE 488 Devices... 7-
Service Requests from IEEE 488.2 Devices.. 7-
Automatic Serial Polling.. 7-1

Stuck SRQ State .. 7-1
GPIB User Manual for Windows 95/Windows NT viii © National Instruments Corporation

Contents

4
5
6

7

Autopolling and Interrupts ...7-14
SRQ and Serial Polling with NI-488 Device Functions.................................7-1
SRQ and Serial Polling with NI-488.2 Routines..7-1

Example 1: Using FindRQS...7-1
Example 2: Using AllSpoll ..7-16

Parallel Polling..7-17
Implementing a Parallel Poll ..7-1

Parallel Polling with NI-488 Functions ...7-17
Parallel Polling with NI-488.2 Routines ..7-19

Chapter 8
GPIB Configuration Utility

Overview...8-1
Windows 95: Configuring the GPIB Software ...8-1
Windows NT: Configuring the GPIB Software..8-4

Appendix A
Status Word Conditions

Appendix B
Error Codes and Solutions

Appendix C
Windows 95: Troubleshooting and Common Questions

Appendix D
Windows NT: Troubleshooting and Common Questions

Appendix E
Customer Communication

Glossary

Index
© National Instruments Corporation ix GPIB User Manual for Windows 95/Windows NT

Contents

2
4

0
1
2

3
5
7
9
12
13
15
17
19
21

12

3
3

5

2

Figures
Figure 1-1. GPIB Address Bits .. 1-
Figure 1-2. Linear and Star System Configuration .. 1-
Figure 1-3. Example of Multiboard System Configuration 1-5
Figure 1-4. How the GPIB Software Works with Windows 95............................... 1-1
Figure 1-5. Selecting an Interface to Remove from Windows 95............................ 1-1
Figure 1-6. Add/Remove Programs Properties Dialog Box in Windows 95 1-1
Figure 1-7. How the GPIB Software Works with Windows NT 1-16

Figure 2-1. Program Flowchart for Example 1 .. 2-
Figure 2-2. Program Flowchart for Example 2 .. 2-
Figure 2-3. Program Flowchart for Example 3 .. 2-
Figure 2-4. Program Flowchart for Example 4 .. 2-
Figure 2-5. Program Flowchart for Example 5 .. 2-
Figure 2-6. Program Flowchart for Example 5 .. 2-
Figure 2-7. Program Flowchart for Example 6 .. 2-
Figure 2-8. Program Flowchart for Example 7 .. 2-
Figure 2-9. Program Flowchart for Example 8 .. 2-
Figure 2-10. Program Flowchart for Example 9 .. 2-

Figure 3-1. General Program Shell Using NI-488 Device Functions 3-8
Figure 3-2. General Program Shell Using NI-488.2 Routines 3-

Figure 5-1. NI Spy Main Window ... 5-2
Figure 5-2. NI Spy Buffer Tab for Device-Level ibwrt ... 5-3

Figure 8-1. GPIB Settings Tab for the AT-GPIB/TNT (PnP) 8-3
Figure 8-2. Device Templates Tab for the Logical Device Templates 8-4
Figure 8-3. Main GPIB Configuration Utility Dialog Box 8-5

Tables
Table 1-1. GPIB Handshake Lines ... 1-
Table 1-2. GPIB Interface Management Lines... 1-

Table 3-1. Status Word Layout... 3-

Table 4-1. GPIB Error Codes ... 4-

Table 6-1. Syntax for Device-Level NI-488 Functions in Win32
Interactive Control... 6-6
GPIB User Manual for Windows 95/Windows NT x © National Instruments Corporation

Contents

0

Table 6-2. Syntax for Board-Level NI-488 Functions in Win32
Interactive Control ...6-8

Table 6-3. Syntax for NI-488.2 Routines in Win32 Interactive Control.................6-1
Table 6-4. Auxiliary Functions in Win32 Interactive Control6-12
© National Instruments Corporation xi GPIB User Manual for Windows 95/Windows NT

© National Instruments Corporation xiii GPIB User Manual fo
About
This

Manual
are

p an
es
This manual describes the features and functions of the GPIB softw
for both Windows 95 and Windows NT.

This manual assumes that you are already familiar with either
Windows 95 or Windows NT.

How to Use the Manual Set

Use the getting started manual to install and configure your GPIB
hardware and software for Windows 95 or Windows NT.

Use this user manual to learn the basics of GPIB and how to develo
application program. This manual also contains application exampl
and troubleshooting information.

Getting Started
Manual

Installation and
Configuration

NI-488.2M Function
Reference Manual

for Win32

Function
and Routine
Descriptions

Novice
Users

Experienced
Users

GPIB User
Manual for

Windows 95
and Windows NT

Application
Development
and Examples
r Windows 95/Windows NT

About This Manual

s.

e

s
The NI-488.2M Function Reference Manual for Win32 contains specific
NI-488 function and NI-488.2 routine information, such as format,
parameters, and possible errors.

Organization of This Manual
The GPIB User Manual for Windows 95 and Windows NT manual is
organized as follows:

• Chapter 1, Introduction, gives an overview of GPIB hardware and
software.

• Chapter 2, Application Examples, contains nine sample
applications designed to illustrate specific GPIB concepts and
techniques that can help you write your own applications.

• Chapter 3, Developing Your Application, explains how to develop
a GPIB application using NI-488 functions and NI-488.2 routine

• Chapter 4, Debugging Your Application, describes several ways to
debug your application.

• Chapter 5, NI Spy Utility, introduces you to NI Spy, a Win32 utility
that monitors and records multiple National Instruments APIs
(for example, NI-488.2 and VISA).

• Chapter 6, Win32 Interactive Control Utility, introduces you to
Win32 Interactive Control, the interactive control utility you can
use to communicate with GPIB devices interactively.

• Chapter 7, GPIB Programming Techniques, describes techniques
for using some NI-488 functions and NI-488.2 routines in your
application.

• Chapter 8, GPIB Configuration Utility, describes the GPIB
Configuration utility, an interactive utility you can use to configur
the GPIB software.

• Appendix A, Status Word Conditions, describes the conditions
reported in the status word, ibsta .

• Appendix B, Error Codes and Solutions, describes each error,
some conditions under which it might occur, and possible
solutions.

• Appendix C, Windows 95: Troubleshooting and Common
Questions, describes how to troubleshoot problems and answer
some common questions for Windows 95 users.
GPIB User Manual for Windows 95/Windows NT xiv © National Instruments Corporation

About This Manual

s

our

s

n

ple,
sis
r

rts

ialog
s,

zes

7
ne
• Appendix D, Windows NT: Troubleshooting and Common
Questions, describes how to troubleshoot problems and answer
some common questions for Windows NT users.

• Appendix E, Customer Communication, contains forms you can
use to request help from National Instruments or to comment on
products and manuals.

• The Glossary contains an alphabetical list and description of term
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics i
this manual, including the page where you can find each one.

Conventions Used in This Manual
The following conventions are used in this manual:

<> Angle brackets enclose the name of a key on the keyboard (for exam
<option>). Angle brackets containing numbers separated by an ellip
represent a range of values associated with a bit or signal name (fo
example, DBIO<3..0>).

» The » symbol leads you through nested menu items and dialog box
options to a final action. The sequence File»Page
Setup»Options»Substitute Fonts directs you to pull down the File
menu, select the Page Setup item, select Options, and finally select the
Substitute Fonts options from the last dialog box.

This icon to the left of bold italicized text denotes a note, which ale
you to important information.

bold Bold text denotes the names of menus, menu items, parameters, d
box, dialog box buttons or options, icons, windows, Windows 95 tab
or LEDs.

bold italic Bold italic text denotes a note, caution, or warning.

bold monospace Bold text in this font denotes the messages and responses that the
computer automatically prints to the screen. This font also emphasi
lines of code that are different from the other examples.

IEEE 488 and IEEE 488 and IEEE 488.2 refer to the ANSI/IEEE Standard 488.1-198
IEEE 488.2 and the ANSI/IEEE Standard 488.2-1992, respectively, which defi

the GPIB.
© National Instruments Corporation xv GPIB User Manual for Windows 95/Windows NT

About This Manual

o a

r

k
vice
 and

ul

cts
 our
ke
italic Italic text denotes emphasis, a cross reference, or an introduction t
key concept. This font also denotes text from which you supply the
appropriate word or value, as in Windows 3.x.

italic monospace Italic text in this font denotes that you must supply the appropriate
words or values in the place of these items.

monospace Text in this font denotes text or characters that should literally ente
from the keyboard, sections of code, programming examples, and
syntax examples. This font is also used for the proper names of dis
drives, paths, directories, programs, subprograms, subroutines, de
names, functions, operations, variables, filenames and extensions,
for statements and comments taken from programs.

Related Documentation
The following documents contain information that you may find helpf
as you read this manual:

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface
for Programmable Instrumentation

• ANSI/IEEE Standard 488.2-1992, IEEE Standard Codes, Formats,
Protocols, and Common Commands

• Microsoft Windows 95 Online Help

• Microsoft Windows NT Online Help

• Microsoft Win32 Software Development Kit for Microsoft
Windows

Customer Communication
National Instruments wants to receive your comments on our produ
and manuals. We are interested in the applications you develop with
products, and we want to help if you have problems with them. To ma
it easy for you to contact us, this manual contains comment and
configuration forms for you to complete. These forms are in
Appendix E, Customer Communication, at the end of this manual.
GPIB User Manual for Windows 95/Windows NT xvi © National Instruments Corporation

© National Instruments Corporation 1-1 GPIB User Manual fo
Chapter

1
Introduction
ose
tion
ins
s.

ke.
p to

on

nds
ler,

ices.

em
led,

ler
).
s

.

This chapter gives an overview of GPIB hardware and software.

GPIB Overview
The ANSI/IEEE Standard 488.1-1987, also known as General Purp
Interface Bus (GPIB), describes a standard interface for communica
between instruments and controllers from various vendors. It conta
information about electrical, mechanical, and functional specification
GPIB is a digital, 8-bit parallel communications interface with data
transfer rates of 1 Mbytes/s and higher, using a three-wire handsha
The bus supports one System Controller, usually a computer, and u
14 additional instruments. The ANSI/IEEE Standard 488.2-1992
extends IEEE 488.1 by defining a bus communication protocol, a
common set of data codes and formats, and a generic set of comm
device commands.

Talkers, Listeners, and Controllers
GPIB devices can be Talkers, Listeners, or Controllers. A Talker se
out data messages. Listeners receive data messages. The Control
usually a computer, manages the flow of information on the bus. It
defines the communication links and sends GPIB commands to dev

Some devices are capable of playing more than one role. A digital
voltmeter, for example, can be a Talker and a Listener. If your syst
has a National Instruments GPIB interface board and software instal
it can function as a Talker, Listener, and Controller.

Controller-In-Charge and System Controller
You can have multiple Controllers on the GPIB, but only one Control
at a time can be the active Controller, or Controller-In-Charge (CIC
The CIC can be either active or inactive (standby). Control can pas
from the current CIC to an idle Controller, but only the System
Controller, usually a GPIB interface board, can make itself the CIC
r Windows 95/Windows NT

Chapter 1 Introduction

ess.

ler
he

e

at
ake

its.

ry

n
ice.

d
sists
nal

GPIB Addressing
All GPIB devices and boards must be assigned a unique GPIB addr
A GPIB address is made up of two parts: a primary address and an
optional secondary address.

The primary address is a number in the range 0 to 30. The Control
uses this address to form a talk or listen address that is sent over t
GPIB when communicating with a device.

A talk address is formed by setting bit 6, the TA (Talk Active) bit of th
GPIB address. A listen address is formed by setting bit 5, the LA
(Listen Active) bit of the GPIB address. For example, if a device is
address 1, the Controller sends hex 41 (address 1 with bit 6 set) to m
the device a Talker. Because the Controller is usually at primary
address 0, it sends hex 20 (address 0 with bit 5 set) to make itself a
Listener. Figure 1-1 shows the configuration of the GPIB address b

Figure 1-1. GPIB Address Bits

With some devices, you can use secondary addressing. A seconda
address is a number in the range hex 60 to hex 7E. When you use
secondary addressing, the Controller sends the primary talk or liste
address of the device followed by the secondary address of the dev

Sending Messages across the GPIB
Devices on the bus communicate by sending messages. Signals an
lines transfer these messages across the GPIB interface, which con
of 16 signal lines and 8 ground return (shield drain) lines. The 16 sig
lines are discussed in the following sections.

Data Lines
Eight data lines, DIO1 through DIO8, carry both data and command
messages.

Bit Position 7 6 5 4 3 2 1 0

Meaning 0 TA LA GPIB Primary Address (range 0-30)
GPIB User Manual for Windows 95/Windows NT 1-2 © National Instruments Corporation

Chapter 1 Introduction

r of
cked
ge

.

l

ge

e

es.
Handshake Lines
Three hardware handshake lines asynchronously control the transfe
message bytes between devices. This process is a three-wire interlo
handshake, and it guarantees that devices send and receive messa
bytes on the data lines without transmission error. Table 1-1
summarizes the GPIB handshake lines.

Interface Management Lines
Five hardware lines manage the flow of information across the bus
Table 1-2 summarizes the GPIB interface management lines.

Table 1-1. GPIB Handshake Lines

Line Description

NRFD
(not ready for data)

Listening device is ready/not ready to receive a
message byte. Also used by the Talker to signa
high-speed GPIB transfers.

NDAC
(not data accepted)

Listening device has/has not accepted a messa
byte.

DAV
(data valid)

Talking device indicates signals on data lines ar
stable (valid) data.

Table 1-2. GPIB Interface Management Lines

Line Description

ATN
(attention)

Controller drives ATN true when it sends
commands and false when it sends data messag

IFC
(interface clear)

System Controller drives the IFC line to initialize
the bus and make itself CIC.

REN
(remote enable)

System Controller drives the REN line to place
devices in remote or local program mode.
© National Instruments Corporation 1-3 GPIB User Manual for Windows 95/Windows NT

Chapter 1 Introduction

 a
ctor

r.

Setting up and Configuring Your System
Devices are usually connected with a cable assembly consisting of
shielded 24-conductor cable with both a plug and receptacle conne
at each end. With this design, you can link devices in a linear
configuration, a star configuration, or a combination of the two
configurations. Figure 1-2 shows the linear and star configurations.

Figure 1-2. Linear and Star System Configuration

SRQ
(service request)

Any device can drive the SRQ line to
asynchronously request service from the Controlle

EOI
(end or identify)

Talker uses the EOI line to mark the end of a data
message. Controller uses the EOI line when it
conducts a parallel poll.

Table 1-2. GPIB Interface Management Lines (Continued)

Line Description

Device A

Device B

Device C

Device DDevice A

Device CDevice B

a. Linear Configuration b. Star Configuration
GPIB User Manual for Windows 95/Windows NT 1-4 © National Instruments Corporation

Chapter 1 Introduction

.

s

for,

Controlling More Than One Board
Figure 1-3 shows an example of a multiboard system configuration
gpib0 is the access board for the voltmeter, and gpib1 is the access
board for the plotter and printer. The control functions of the device
automatically access their respective boards.

Figure 1-3. Example of Multiboard System Configuration

Configuration Requirements
To achieve the high data transfer rate that the GPIB was designed
you must limit the number of devices on the bus and the physical
distance between devices. The following restrictions are typical:

• A maximum separation of 4 m between any two devices and an
average separation of 2 m over the entire bus

• A maximum total cable length of 20 m

• A maximum of 15 devices connected to each bus, with at least
two-thirds powered on

One
GPIB

Another
GPIB

Digital
Voltometer

Plotter

Printer

gpib0

gpib1
© National Instruments Corporation 1-5 GPIB User Manual for Windows 95/Windows NT

Chapter 1 Introduction

5 m

r to
r of
and

,

nt.

w
t

f
are
e

ll
s.

h

am
For high-speed operation, the following restrictions apply:

• All devices in the system must be powered on.

• Cable lengths must be as short as possible up to a maximum of 1
of cable for each system.

• There must be at least one equivalent device load per meter of
cable.

If you want to exceed these limitations, you can use a bus extende
increase the cable length or a bus expander to increase the numbe
device loads. Contact National Instruments to order bus extenders
expanders.

GPIB Software for Windows 95
The following sections describe the GPIB software for Windows 95
which controls the flow of communication on the GPIB.

GPIB Software for Windows 95 Components
The following sections highlight important components of the GPIB
software for Windows 95 and describe the function of each compone

GPIB Driver and Driver Utilities
The distribution disks contain the following driver and utility files:

• A documentation file, readme.txt , that contains important
information about the GPIB software and a description of any ne
features. Before you use the software, read this file for the mos
recent information.

• Native, 32-bit GPIB driver components, including a collection o
dynamically loadable, Plug and Play aware, and multitasking aw
virtual device drivers and dynamic link libraries (DLLs). They ar
installed into the Windows 95 system directory, usually
c:\windows\system .

• A Win32 DLL, gpib-32.dll , that acts as the interface between a
Windows 95 GPIB applications and the GPIB driver component

• Win32 Interactive Control utility that you use to communicate wit
the GPIB devices interactively using NI-488.2 functions and
routines. It helps you to learn the NI-488.2 routines and to progr
your instrument or other GPIB devices.
GPIB User Manual for Windows 95/Windows NT 1-6 © National Instruments Corporation

Chapter 1 Introduction

g

nd

• NI Spy, the GPIB application monitor program. It is a debuggin
tool that you can use to monitor the NI-488.2 calls your GPIB
applications make.

• The GPIB Configuration utility, integrated into the Windows 95
Device Manager, that you use to modify the configuration
parameters of the GPIB software.

• Diagnostic utility that you use to verify that the GPIB hardware a
software are installed properly.

16-Bit Windows Support Files
The distribution disks contain the following 16-bit Windows support
files:

• A 16-bit Windows DLL, gpib.dll . When you run an existing
GPIB application for Windows in the Windows 95 environment,
this file replaces the GPIB DLL that you used in the Windows
16-bit environment.

• A 32-bit Windows DLL, gpib32ft.dll , that helps gpib.dll
thunk 16-bit GPIB calls to 32-bit GPIB calls that address the
standard 32-bit DLL, gpib-32.dll .

DOS Support Files
The distribution disks contain the following DOS support files:

• A Virtual Device Driver (VxD), gpibdosk.vxd , that serves as the
DOS device driver, to trap NI-488 function calls and NI-488.2
routine calls made by DOS applications and route them to the
standard 32-bit DLL, gpib-32.dll . This file replaces the
real-mode DOS device driver that would be loaded from your
config.sys file if you were using the DOS environment for DOS
GPIB applications.

• A Win32 executable, gpibdos.exe , that helps gpibdosk.vxd
thunk DOS GPIB calls to 32-bit GPIB calls that address the
standard 32-bit DLL, gpib-32.dll .
© National Instruments Corporation 1-7 GPIB User Manual for Windows 95/Windows NT

Chapter 1 Introduction

e

nts.

e

nts.

rce
iled
Microsoft C/C++ Language Interface Files
The distribution disks contain the following Microsoft C/C++ languag
interface files:

• A documentation file, readme.txt , that contains information
about the C language interface.

• A 32-bit include file, decl-32.h , that contains NI-488 function
and NI-488.2 routine prototypes and various predefined consta

• A 32-bit C language interface file, gpib-32.obj , that an
application links with in order to access the 32-bit DLL.

Borland C/C++ Language Interface Files
The distribution disks contain the following Borland C/C++ languag
interface files:

• A documentation file, readme.txt , that contains information
about the C language interface.

• A 32-bit include file, decl-32.h , that contains NI-488 function
and NI-488.2 routine prototypes and various predefined consta

• A 32-bit C language interface file, borlandc_gpib-32.obj , that
an application links with in order to access the 32-bit DLL.

Microsoft Visual Basic Language Interface Files
The distribution disks contain the following Microsoft Visual Basic
language interface files:

• A documentation file, readme.txt , that contains information
about the Visual Basic language interface.

• A Visual Basic global module, niglobal.bas , that contains
certain predefined constant declarations.

• A Visual Basic source file, vbib-32.bas , that contains NI-488.2
routine and NI-488 function prototypes.

Sample Application Files
The GPIB software includes nine sample applications along with sou
code for each language supported by the GPIB software. For a deta
description of the sample application files, refer to Chapter 2,
Application Examples.
GPIB User Manual for Windows 95/Windows NT 1-8 © National Instruments Corporation

Chapter 1 Introduction

ces
rom

or

to
How the GPIB Software Works with Windows 95
The GPIB software for Windows 95 includes a multi-layered device
driver that consists of DLL pieces that run in user mode and VxD pie
that run in kernel mode. User applications access this device driver f
user mode through gpib-32.dll , a 32-bit Windows 95 DLL.

GPIB applications access the GPIB software through gpib-32.dll as
follows:

• A Win32 application can either link with the language interface
directly access the functions exported by the DLL.

• A Win16 application uses the 16-bit thunking DLL, gpib.dll , and
32-bit thunking DLL, gpib32ft.dll , to access the GPIB driver.

• A DOS application uses the DOS support VxD and application
access the GPIB driver.
© National Instruments Corporation 1-9 GPIB User Manual for Windows 95/Windows NT

Chapter 1 Introduction

.

,
Figure 1-4 shows the interaction between various types of GPIB
applications (shaded sections) and the GPIB software components

Figure 1-4. How the GPIB Software Works with Windows 95

Uninstalling the GPIB Hardware from Windows 95
Before you physically remove the GPIB hardware from your system
you must remove the hardware information from the Windows 95
Device Manager.

To remove the hardware information from Windows 95, select
Start»Settings»Control Panel and double-click on the System icon.
Select the Device Manager tab in the System Properties dialog box
that appears, click on the View devices by type button at the top of the
Device Manager tab, and double-click on the National Instruments
GPIB Interfaces icon.

Win16 Application

gpib.dll

gpib32ft.dll

gpib-32.dll DOS Support
Application

DOS Application

DOS Support VxD

gpibmngr.dll

VxD Class Driver

VxD Port Driver

Win32 Application

User Mode

Kernal Mode

GPIB Hardware

Win32 Application
Language Interface
GPIB User Manual for Windows 95/Windows NT 1-10 © National Instruments Corporation

Chapter 1 Introduction

To remove an interface, select it from the list of interfaces under
National Instruments GPIB Interfaces as shown in Figure 1-5,
and click on the Remove button.

Figure 1-5. Selecting an Interface to Remove from Windows 95

After you remove the appropriate hardware information from the
Device Manager, you should shut down your system and physically
remove the hardware from your system.
© National Instruments Corporation 1-11 GPIB User Manual for Windows 95/Windows NT

Chapter 1 Introduction

B

r
m

try
Uninstalling the GPIB Software for Windows 95
Before you uninstall the GPIB software, you should remove all GPI
hardware information from the Windows 95 Device Manager, as
described in the previous section. Complete the following steps to
uninstall the GPIB software:

1. Select Start»Settings»Control Panel and double-click on the
Add/Remove Programs icon. A dialog box similar to the one
shown in Figure 1-6 appears. This dialog box lists the software
available on your system for uninstallation.

Figure 1-6. Add/Remove Programs Properties Dialog Box in Windows 95

2. Select the GPIB software you want to remove, and click on the
Add/Remove... button. You can select either the GPIB software o
the GPIB Analyzer software to remove. The uninstallation progra
runs and removes all folders, programs, VxDs, DLLs, and regis
entries associated with the GPIB software.

If you have interfaces other than PCMCIA cards and you have not
physically removed them from your system, you should shut down
GPIB User Manual for Windows 95/Windows NT 1-12 © National Instruments Corporation

Chapter 1 Introduction

ur

,

w
t

ll
s.

h

am

g

nd
Windows 95, power off your system, and physically remove the
interfaces now. However, you may remove PCMCIA cards without
powering off your system.

If you want to reinstall the GPIB hardware and software, refer to yo
getting started manual.

GPIB Software for Windows NT
The following sections describe the GPIB software for Windows NT
which controls the flow of communication on the GPIB.

GPIB Software for Windows NT Components
The following sections highlight important components of the GPIB
software for Windows NT and describe the function of each
component.

GPIB Driver and Driver Utilities
The distribution disks contain the following driver and utility files:

• A documentation file, readme.txt , that contains important
information about the GPIB software and a description of any ne
features. Before you use the software, read this file for the mos
recent information.

• Native Windows NT kernel driver components.

• A Win32 DLL, gpib-32.dll , that acts as the interface between a
Windows NT GPIB applications and the GPIB driver component

• Win32 Interactive Control utility that you use to communicate wit
the GPIB devices interactively using NI-488.2 functions and
routines. It helps you to learn the NI-488.2 routines and to progr
your instrument or other GPIB devices.

• NI Spy, the GPIB application monitor program. It is a debuggin
tool that you can use to monitor the NI-488.2 calls your GPIB
applications make.

• The GPIB Configuration utility, a control panel application that
you use to modify the configuration parameters of the GPIB
software.

• Diagnostic utility you can use to verify that the GPIB hardware a
software are installed properly.
© National Instruments Corporation 1-13 GPIB User Manual for Windows 95/Windows NT

Chapter 1 Introduction

s

er

IB

e

nts.

e

nts.
DOS and 16-Bit Windows Support Files
The distribution disks contain the following DOS and 16-bit Window
support files:

• A documentation file, readme.txt , that contains information
about using existing DOS and 16-bit Windows applications und
Windows NT.

• A Virtual Device Driver, gpib-vdd.dll , that allows existing
GPIB applications for DOS and 16-bit Windows to access the GP
software.

• A DOS device driver, gpib-nt.com . When you run an existing
GPIB application for DOS in the Windows NT environment, this
file replaces the gpib.com driver that you used in the DOS
environment.

• A 16-bit Windows DLL, gpib.dll . When you run an existing
GPIB application for Windows in the Windows NT environment,
this file replaces the GPIB DLL that you used in the Windows
(16-bit) environment.

Microsoft C/C++ Language Interface Files
The distribution disks contain the following Microsoft C/C++ languag
files:

• A documentation file, readme.txt , that contains information
about the C language interface.

• A 32-bit include file, decl-32.h , that contains NI-488 function
and NI-488.2 routine prototypes and various predefined consta

• A 32-bit C language interface file, gpib-32.obj , that an
application links with in order to access the 32-bit DLL.

Borland C/C++ Language Interface Files
The distribution disks contain the following Borland C/C++ languag
files:

• A documentation file, readme.txt , that contains information
about the C language interface.

• A 32-bit include file, decl-32.h , that contains NI-488 function
and NI-488.2 routine prototypes and various predefined consta

• A 32-bit C language interface file, borlandc_gpib-32.obj , that
an application links with in order to access the 32-bit DLL.
GPIB User Manual for Windows 95/Windows NT 1-14 © National Instruments Corporation

Chapter 1 Introduction

rce
iled

r
he

les

e

or
Microsoft Visual Basic Language Interface Files
The distribution disks contain the following Microsoft Visual Basic
language files:

• A documentation file, readme.txt , that contains information
about the Visual Basic language interface.

• A Visual Basic global module, niglobal.bas , that contains
certain predefined constant declarations.

• A Visual Basic source file, vbib-32.bas , that contains NI-488.2
routine and NI-488 function prototypes.

Sample Application Files
The GPIB software includes nine sample applications along with sou
code for each language supported by the GPIB software. For a deta
description of the sample application files, refer to Chapter 2,
Application Examples.

How the GPIB Software Works with Windows NT
The GPIB software for Windows NT includes a DLL that runs in use
mode and a multi-layered device driver that runs in kernel mode. T
multi-layered device driver consists of three drivers: a device class
driver that handles device-level calls, a board class driver that hand
board-level calls, and a GPIB port driver that uses the Hardware
Abstraction Layer (HAL) to communicate with the GPIB hardware. Th
user applications access this device driver from user mode through
gpib-32.dll , a 32-bit Windows NT DLL.

GPIB applications access the GPIB software through gpib-32.dll as
follows:

• A Win32 application can either link with the language interface
directly access the functions exported by the DLL.

• A Win16 application uses the 16-bit DLL, gpib.dll , to access the
GPIB virtual device driver, gpib-vdd.dll .

• A DOS application uses the DOS device driver, gpib-nt.com , to
access the GPIB virtual device driver.
© National Instruments Corporation 1-15 GPIB User Manual for Windows 95/Windows NT

Chapter 1 Introduction

.

Figure 1-7 shows the interaction between various types of GPIB
applications (shaded sections) and the GPIB software components

Figure 1-7. How the GPIB Software Works with Windows NT

Win16 Application

gpib.dll

DOS Application

gpib-nt.com

gpib-vdd.dll

gpib-32.dll

Win32 Subsystem

Win32 Application

User Mode

Kernel Mode

Win32 Application
Language Interface

Applications

NT Executive

Protected
Subsystem

System Services

Hardware Abstraction Layer (HAL)

Kernel

I/O Manager

gpibclsd.sys

gpibclsb.sys

gpibxxxx.sys

GPIB Hardware
GPIB User Manual for Windows 95/Windows NT 1-16 © National Instruments Corporation

Chapter 1 Introduction

e
Unloading and Reloading the GPIB Driver for Windows NT
You can unload and reload the GPIB driver using the GPIB
Configuration utility. To run this utility, select Start»Settings»Control
Panel, and double-click on the GPIB icon.

The main window has an Unload button and an OK button. If you click
on the Unload button, the GPIB driver is unloaded. If you click on th
OK button, the GPIB driver is automatically unloaded and then
reloaded. Refer to Chapter 8, GPIB Configuration Utility, for more
information about this utility.
© National Instruments Corporation 1-17 GPIB User Manual for Windows 95/Windows NT

© National Instruments Corporation 2-1 GPIB User Manual fo
Chapter

2
Application Examples
te
r

h

 to
pts

w
 a

w

w

n
IB
his

n
This chapter contains nine sample applications designed to illustra
specific GPIB concepts and techniques that can help you write you
own applications. The description of each example includes the
programmer's task, a program flowchart, and numbered steps whic
correspond to the numbered blocks on the flowchart.

Use this chapter along with your GPIB software, which includes the
C and Visual Basic source code for each of the nine examples. The
programs are listed in order of increasing complexity. If you are new
GPIB programming, you might want to study the contents and conce
of the first sample, simple.c , before moving on to more complex
examples.

The following example programs are included with your GPIB
software:

• simple.c is the source code file for Example 1. It illustrates ho
you can establish communication between a host computer and
GPIB device.

• clr_trg.c is the source code file for Example 2. It illustrates ho
you can clear and trigger GPIB devices.

• asynch.c is the source code file for Example 3. It illustrates ho
you can perform non-GPIB tasks while data is being transferred
over the GPIB.

• eos.c is the source code file for Example 4. It illustrates the
concept of the end-of-string (EOS) character.

• rqs.c is the source code file for Example 5. It illustrates how a
application communicates with a GPIB device that uses the GP
service request (SRQ) line to indicate that it needs attention. T
sample is written using NI-488 functions.

• easy4882.c is the source code file for Example 6. It provides a
introduction to communicating with IEEE 488.2-compliant
devices.
r Windows 95/Windows NT

Chapter 2 Application Examples

.2
RQ

IB

een

rd.

 is

 and
n

rd

e

age

e

e
ings
• rqs4882.c is the source code file for Example 7. It uses NI-488
routines to communicate with GPIB devices that use the GPIB S
line to request service.

• ppoll.c is the source code file for Example 8. It uses NI-488.2
routines to conduct parallel polls.

• non_cic.c is the source code file for Example 9. It uses the GP
driver in a non-Controller application.

Example 1: Basic Communication
This example illustrates how you can establish communication betw
a host computer and a GPIB device.

A technician needs to monitor voltage readings using a GPIB
multimeter. His system is equipped with an IEEE 488.2 interface boa
The GPIB software is installed, and a GPIB cable runs from the
computer to the GPIB port on the multimeter.

The technician is familiar with the multimeter remote programming
command set. This list of commands is specific to his multimeter and
available from the multimeter manufacturer.

He sets up his system to direct the multimeter to take measurements
record each measurement as it occurs. To do this, he has written a
application that uses some simple high-level GPIB commands. The
following steps correspond to the program flowchart in Figure 2-1:

1. The application initializes the GPIB by bringing the interface boa
in the computer online.

2. The application sends the multimeter a command to take voltag
measurements in autorange mode.

3. The application sends the multimeter a command to take a volt
measurement.

4. The application sends the multimeter a command to transmit th
data it has acquired to the computer.

The process of requesting a measurement and reading from th
multimeter (steps 3 and 4) is repeated as long as there are read
to be obtained.

5. As a cleanup step before exiting, the application returns the
interface board to its original state by taking it offline.
GPIB User Manual for Windows 95/Windows NT 2-2 © National Instruments Corporation

Chapter 2 Application Examples
Figure 2-1. Program Flowchart for Example 1

Yes

No Finished Getting
Measurements?

INIT1

Set Up Multimeter
to Take Voltages2

Tell Multimeter to
Take Measurements3

Read Measurement
From Multimeter4

CLEAN UP5

ibwrt

ibwrt

ibrd

"VOLTS DC;AUTO"

"VOLTS?"

"+ 5 volts"

Computer Multimeter

GPIB Cable
© National Instruments Corporation 2-3 GPIB User Manual for Windows 95/Windows NT

Chapter 2 Application Examples

s.

 a
eir
ing
ds.
-2:

rd

pe.

ay

pe

The

been
Example 2: Clearing and Triggering Devices
This example illustrates how you can clear and trigger GPIB device

Two freshman physics lab partners are learning how to use a GPIB
digital oscilloscope. They successfully install the GPIB software on
PC and connect their GPIB board to a GPIB digital oscilloscope. Th
current lab assignment is to write a small application to practice us
the oscilloscope and its command set using high-level GPIB comman
The following steps correspond to the program flowchart in Figure 2

1. The application initializes the GPIB by bringing the interface boa
in the computer online.

2. The application sends a GPIB clear command to the oscillosco
This command clears the internal registers of the oscilloscope,
reinitializing it to default values and settings.

3. The application sends a command to the oscilloscope to read a
waveform each time it is triggered. Predefining the task in this w
decreases the execution time required. Each trigger of the
oscilloscope is now sufficient to get a new run.

4. The application sends a GPIB trigger command to the oscillosco
which causes it to acquire data.

5. The application queries the oscilloscope for the acquired data.
oscilloscope sends the data.

6. The application reads the data from the oscilloscope.

7. The application calls an external graphics routine to display the
acquired waveform.

Steps 4, 5, 6, and 7 are repeated until all of the desired data has
acquired by the oscilloscope and received by the computer.

8. As a cleanup step before exiting, the application returns the
interface board to its original state by taking it offline.
GPIB User Manual for Windows 95/Windows NT 2-4 © National Instruments Corporation

Chapter 2 Application Examples
Figure 2-2. Program Flowchart for Example 2

Yes

No Finished Reading?

INIT1

Clear Oscilloscope2

Define Task to Be Done
When Oscilloscope

Is Triggered
3

Trigger Oscilloscope
to Get Reading4

CLEAN UP8

ibclr

ibwrt

ibtrg

Request Data
from Oscilloscope5

ibwrt

Read Data
from Oscilloscope6

ibrd

Display Waveform7

Clear Command

"WAV=TRIG"

Trigger Command

"CURV?"

Data

Computer Oscilloscope

GPIB Cable
© National Instruments Corporation 2-5 GPIB User Manual for Windows 95/Windows NT

Chapter 2 Application Examples

s
ode

T
n as

 the
he

to

rd

ew

ted
us
5 are

e
Example 3: Asynchronous I/O
This example illustrates how you can perform other non-GPIB task
while data is being transferred over the GPIB. This asynchronous m
of operation is particularly useful when the requested GPIB activity
may take some time to complete.

In this example, a research biologist is trying to obtain accurate CA
scans of a lab animal’s liver. She prints out a color copy of each sca
it is acquired. The entire operation is computer-controlled. The CAT
scan machine sends the images it acquires to a computer that has
GPIB software installed and is connected to a GPIB color printer. T
biologist is familiar with the command set of her color printer, as
described in the user manual provided by the manufacturer. She
acquires and prints images with the aid of an application she wrote
using high-level GPIB commands. The following steps correspond
the program flowchart in Figure 2-3:

1. The application initializes the GPIB by bringing the interface boa
in the computer online.

2. The research biologist scans in an image.

3. The application sends the GPIB printer a command to print the n
image and immediately returns without waiting for the I/O
operation to be completed.

4. The application saves the image obtained to a file.

5. The application sends a GPIB wait command to inquire as to
whether the printing operation has completed. If the status repor
by the wait command indicates completion (CMPL is in the stat
returned) and more scans need to be acquired, steps 2 through
repeated until all the scans have been acquired. If the status
reported by the wait command in step 5 does not indicate that
printing is finished, statistical computations are performed on th
scan obtained and step 5 is repeated.

6. As a cleanup step before exiting, the application returns the
interface board to its original state by taking it offline.
GPIB User Manual for Windows 95/Windows NT 2-6 © National Instruments Corporation

Chapter 2 Application Examples
Figure 2-3. Program Flowchart for Example 3

No

Yes More Images?

INIT1

Image Scan2

Print Image
Asynchronously3

Yes

NoIs GPIB Printing
Done?

Non-GPIB Activity:
Save to Disk

Non-GPIB Activity:
Compute Statistics

4

CLEAN UP6

ibwrta

5

ibwait

Print Image

Computer Color Printer

GPIB Cable
© National Instruments Corporation 2-7 GPIB User Manual for Windows 95/Windows NT

Chapter 2 Application Examples

t the

 PC

ent
ith

rd

be

lled
ar
e

 are
can

e
y

 the
Example 4: End-of-String Mode
This example illustrates the concept of the end-of-string (EOS)
character. It also illustrates how to use the EOS modes to detect tha
GPIB device has finished sending data.

A journalist is using a GPIB scanner to scan some pictures into his
for a news story. A GPIB cable runs between the scanner and the
computer. He uses an application written by an intern in the departm
who has read the instruction manual for the scanner and is familiar w
the programming requirements of the scanner. The following steps
correspond to the program flowchart in Figure 2-4:

1. The application initializes the GPIB by bringing the interface boa
in the computer online.

2. The application sends a GPIB clear message to the scanner,
initializing it to its power-on defaults.

3. The scanner needs to detect a delimiter indicating the end of a
command. In this case, the scanner expects the commands to
terminated with <CR><LF> (carriage return, \r , and linefeed, \n).
The application sets its EOS byte to <LF>. The linefeed code
indicates to the scanner that no more data is coming, and is ca
the end-of-string byte. It flags an EOS condition for this particul
GPIB scanner. The same effect is accomplished by asserting th
EOI line when the command is sent.

4. With the exception of the scan resolution, all the default settings
appropriate for the task at hand. The application changes the s
resolution by writing the appropriate command to the scanner.

5. The scanner sends back information describing the status of th
change resolution command. This is a string of bytes terminated b
the EOS character to communicate to the application it is done
changing the resolution.

6. The application starts the scan by writing the scan command to
scanner.

7. The application reads the scan data into the computer.

8. As a cleanup step before exiting, the application returns the
interface board to its original state by taking it offline.
GPIB User Manual for Windows 95/Windows NT 2-8 © National Instruments Corporation

Chapter 2 Application Examples
Figure 2-4. Program Flowchart for Example 4

INIT1

Reset Internal State2

Set EOS Mode3

Change Scan
Resolution4

CLEAN UP8

ibeos

ibwrt

Read Status5

ibwrt

Start Scan6

ibrd

Read Data7

ibrd

ibclr

Clear Command

"RES:3\r\n"

"OK"

"scan\r\n"

Scanned Data

Computer Scanner

GPIB Cable
© National Instruments Corporation 2-9 GPIB User Manual for Windows 95/Windows NT

Chapter 2 Application Examples

IB
at it

lled

ser
 in
g
rds
m

rd

as
are

e
e

nd,
ts

on
rial
er
tus
Example 5: Service Requests
This example illustrates how an application communicates with a GP
device that uses the GPIB service request (SRQ) line to indicate th
needs attention.

A graphic arts designer is transferring digital images stored on her
computer to a roll of color film, using a GPIB digital film recorder.
A GPIB cable connects the GPIB port on the film recorder to the
IEEE 488.2 interface board installed in her computer. She has insta
the GPIB software on the host computer and is familiar with the
programming instructions for the film recorder, as described in the u
manual provided by the manufacturer. She places a fresh roll of film
the camera and launches a simple application she has written usin
high-level GPIB commands. With the aid of the application, she reco
a few images on film. The following steps correspond to the progra
flowchart in Figures 2-5 and 2-6:

1. The application initializes the GPIB by bringing the interface boa
in the computer online.

2. The application sends a device clear command to bring the film
recorder to a ready state. The film recorder is now set up for
operation using its default values. (The graphic arts designer h
already established that the default values for the film recorder
appropriate for the type of film she is using).

3. The application advances the new roll of film into position so th
first image can be exposed on the first frame of film. This is don
by sending the appropriate instructions as described in the film
recorder programming guide.

4. The application waits for the request for service (RQS) comma
signifying that it is done loading the film. The film recorder asser
the GPIB SRQ line when it has finished loading the film.

5. After the film recorder asserts the GPIB SRQ line, the applicati
is done waiting for the RQS event. The application conducts a se
poll by sending a special command message to the film record
that directs it to return a response in the form of a serial poll sta
byte. This byte contains information indicating what kind of
service the film recorder is requesting or what condition it is
flagging. In this example, it indicates the completion of a
command.
GPIB User Manual for Windows 95/Windows NT 2-10 © National Instruments Corporation

Chapter 2 Application Examples

e
ach

ing
der

the
in

ce
 the

 the

tes
e

is in
6. A color image transfers to the digital film recorder in three
consecutive passes—one pass each for the red, green, and blu
components of the image. The following steps are repeated for e
of the passes:

a. The application sends a command to the film recorder direct
it to accept data to create a single pass image. The film recor
asserts the SRQ line after a pass is completed.

b. The application waits for RQS.

c. When the SRQ line is asserted, the application serial polls
film recorder to determine whether it requested service, as
step 5.

7. The application sends a command to the film recorder to advan
the film by one frame. The advance occurs successfully unless
application reaches the end of the film.

8. The application waits for RQS, which completes when the film
recorder asserts the SRQ line to signal it has finished advancing
film.

9. After the application's wait for RQS completes, the application
serial polls the film recorder to determine whether it requested
service, as in step 5. The returned serial poll status byte indica
either of two conditions—the film recorder finished advancing th
film as requested or it reached the end of the film and it can no
longer advance. Steps 6 through 9 are repeated as long as film
the camera and more images need to be recorded.

10. As a cleanup step before exiting, the application returns the
interface board to its original state by taking it offline.
© National Instruments Corporation 2-11 GPIB User Manual for Windows 95/Windows NT

Chapter 2 Application Examples
Figure 2-5. Program Flowchart for Example 5

INIT1

Clear Film Recorder2

Advance Film3

Wait for the Film
Recorder to

Request Service
4

ibwrt

ibwait

Read Response from
the Film Recorder

5

Exit Application and
Repair Film Recorder

ibrsp

ibclr

Clear Command

"FRM+"

Did You
Request Service?

Response

Yes

Request Service

Computer Digital Film Recorder

GPIB Cable

Yes

No Finished Loading
Film?
GPIB User Manual for Windows 95/Windows NT 2-12 © National Instruments Corporation

Chapter 2 Application Examples
Figure 2-6. Program Flowchart for Example 5

Create a Single
Pass Image6a

Advance Film

CLEAN UP

Wait for the Film
Recorder to

Request Service
6b6

Read Response from
the Film Recorder

6c

ibrsp

ibrsp

ibwait

ibwait

ibwrt

ibwrt

Did You
Request Service?

Data for Red,
Green, or Blue Pass

Response

Read Response from
the Film Recorder

Response

Yes

Wait for the Film
Recorder to

Request Service
8

9

10

7

Did You
Request Service?

Request Service

Computer Digital Film Recorder

Yes

No Reached End of
Film?

Yes

Request Service

"ADV"

These steps are
repeated three
times (once for
each color pass)
© National Instruments Corporation 2-13 GPIB User Manual for Windows 95/Windows NT

Chapter 2 Application Examples

ile

cted
.
er
f his

ich

 the

rd

ses

Example 6: Basic Communication with
IEEE 488.2-Compliant Devices

This example provides an introduction to communicating with
IEEE 488.2-compliant devices.

A test engineer in a metal factory is using IEEE 488.2-compliant tens
testers to determine the strength of metal rods as they come out of
production. There are several tensile testers and they are all conne
to a central computer equipped with an IEEE 488.2 interface board
These machines are fairly voluminous and it is difficult for the engine
to reach the address switches of each machine. For the purposes o
future work with these tensile testers, he needs to determine to wh
GPIB addresses they have been set. He can do so with the aid of a
simple application he has written. The following steps correspond to
program flowchart in Figure 2-7:

1. The application initializes the GPIB by bringing the interface boa
in the computer online.

2. The application sends a command to detect the presence of
listening devices on the GPIB and compiles a list of the addres
of all such devices.

3. The application sends an identification query ("*IDN?") all of the
devices detected on the GPIB in step 2.

4. The application reads the identification information returned by
each of the devices as it responds to the query in step 3.

5. As a cleanup step before exiting, the application returns the
interface board to its original state by taking it offline.
GPIB User Manual for Windows 95/Windows NT 2-14 © National Instruments Corporation

Chapter 2 Application Examples
Figure 2-7. Program Flowchart for Example 6

INIT1

CLEAN UP5

Tell Device 1 to
Identify Itself

3

Read Response
from Device 1

4

Tell Device 2 to
Identify Itself

3

Read Response
from Device 2

4

Tell Device 3 to
Identify Itself

3

Read Response
from Device 3

4

FindLstn

Send

Receive

Send

Receive

Send

Receive

Who's Listening?

"IDN?"

"IDN?"

Get a List of Devices
Present on GPIB2 Device 1 Is Here

"MUTT 10383"

"MUTT 10426"

"IDN?"

"MUTT 10528"

Computer Tensile Tester 1

GPIB Cable GPIB Cable GPIB Cable

Tensile Tester 2 Tensile Tester 3

Device 2 Is Here
Device 3 Is Here
© National Instruments Corporation 2-15 GPIB User Manual for Windows 95/Windows NT

Chapter 2 Application Examples

s the

ig
ncy
t
n a
atch
ted
 the
n

d to

rd

the

t

t

ges

ears
ove
pts

een
Example 7: Serial Polls Using NI-488.2 Routines
This example uses NI-488.2 routines to communicate with GPIB
devices that use the GPIB SRQ line to request services. This reduce
complexity of performing serial polls of multiple devices.

A candy manufacturer is using GPIB strain gauges to measure the
consistency of the syrup used to make candy. The plant has four b
mixers containing syrup. The syrup has to reach a certain consiste
to make good quality candy. This is measured by strain gauges tha
monitor the amount of pressure used to move the mixer arms. Whe
certain consistency is reached, the mixture is removed and a new b
of syrup is poured in the mixer. The GPIB strain gauges are connec
to a computer equipped with an IEEE 488.2 interface board that has
GPIB software installed. The process is controlled by an applicatio
that uses NI-488.2 routines to communicate with the
IEEE 488.2-compliant strain gauges. The following steps correspon
the program flowchart in Figure 2-8:

1. The application initializes the GPIB by bringing the interface boa
in the computer online.

2. The application configures the strain gauges to request service
when they have a significant pressure reading or a mechanical
failure occurs. They signal their request for service by asserting
SRQ line.

3. The application waits for one or more of the strain gauges to
indicate that they have a significant pressure reading. This wai
event ends after the SRQ line is asserted.

4. The application serial polls each of the strain gauges to see if i
requested service.

5. Once the application has determined which one of the strain gau
requires service, it takes a reading from that strain gauge.

6. If the reading matches the desired consistency, a dialog box app
on the computer screen and prompts the mixer operator to rem
the mixture and start a new batch. Otherwise, a dialog box prom
the operator to service the mixer in some other way.

Steps 3 through 6 are repeated until the last batch of syrup has b
processed.

7. As a cleanup step before exiting, the application returns the
interface board to its original state by taking it offline.
GPIB User Manual for Windows 95/Windows NT 2-16 © National Instruments Corporation

Chapter 2 Application Examples
Figure 2-8. Program Flowchart for Example 7

INIT1

CLEAN UP7

Wait for 1 or More
Strain Gauges to
Request Service

3

Serial Poll Each Strain
Gauge Until One

Requesting Service
Is Located

4

Get a Reading from
Strain Gauge

Provide Whatever
Service Is Required

5

Mixture Is Ready
Display "Remove
Mixture" Message

6

SendList

WaitSRQ

FindRQS

Receive

Did You Request
Service?

Configure Strain
Gauges to Request
Service When They

Have a Reading

2

No

"SRQ=HI"

Did You Request
Service?

Yes

Response

Request Service

Computer Strain Gauge 1

GPIB Cable GPIB Cable GPIB Cable

Strain Gauge 2 Strain Gauge 3

No

Yes
No Does the Gauge

Need Service?

Yes

No Done For the
Day?
© National Instruments Corporation 2-17 GPIB User Manual for Windows 95/Windows NT

Chapter 2 Application Examples

ins
ng

ee
the
 is
ts

 the

ion

rd

rst
e
he

r

the

ird

at.

en
Example 8: Parallel Polls
This example uses NI-488.2 routines to conduct parallel polls. It obta
information from several IEEE 488.2-compliant devices at once usi
a procedure called parallel polling.

The process of manufacturing a particular alloy involves bringing thr
different metals to specific temperatures before mixing them to form
alloy. Three vats are used, each containing a different metal. Each
monitored by a GPIB ore monitoring unit. The monitoring unit consis
of a GPIB temperature transducer and a GPIB power supply. The
temperature transducer probes the temperature of each metal. The
power supply starts a motor to pour the metal into the mold when it
reaches a predefined temperature. The three monitoring units are
connected to the IEEE 488.2 interface board of a computer that has
GPIB software installed. An application using NI-488.2 routines
operates the three monitoring units. The application obtains informat
from the multiple units by conducting a parallel poll, and then
determines when to pour the metals into the mixture tank. The
following steps correspond to the program flowchart in Figure 2-9:

1. The application initializes the GPIB by bringing the interface boa
in the computer online.

2. The application configures the temperature transducer in the fi
monitoring unit by choosing which of the eight GPIB data lines th
transducer uses to respond when a parallel poll is conducted. T
application also sets the temperature threshold. The transduce
manufacturer has defined the individual status (ist) bit to be true
when the temperature threshold is reached, and the configured
status mode of the transducer is assert the data line. When a
parallel poll is conducted, the transducer asserts its data line if
temperature has exceeded the threshold.

3. The application configures the temperature transducer in the
second monitoring unit for parallel polls.

4. The application configures the temperature transducer in the th
monitoring unit for parallel polls.

5. The application conducts non-GPIB activity while the metals he

6. The application conducts a parallel poll of all three temperature
transducers to determine whether the metals have reached the
appropriate temperature. Each transducer asserts its data line
during the configuration step if its temperature threshold has be
reached.
GPIB User Manual for Windows 95/Windows NT 2-18 © National Instruments Corporation

Chapter 2 Application Examples

the
ach
he

e,
te

 no
7. If the response to the poll indicates that all three metals are at
appropriate temperature, the application sends a command to e
of the three power supplies, directing them to power on. Then t
motors start and the metals pour into the mold.

If only one or two of the metals is at the appropriate temperatur
steps 5 and 6 are repeated until the metals reach the appropria
temperatures.

8. The application unconfigures all of the transducers so that they
longer participate in parallel polls.

9. As a cleanup step before exiting, the application returns the
interface board to its original state by taking it offline.

Figure 2-9. Program Flowchart for Example 8

Parallel Poll
Enable

Parallel Poll
Disable

Parallel Poll

"MIX ON"

Parallel Poll
Enable

Parallel Poll
Enable

INIT

UNIT 1
Temperature
Transducer

Power
Supply1

PPoll Unconfigure8

Configure Transducer 2
for Parallel Ports3

4

Non-GPIB Activity5

Start Power Supplies7

6

PPollConfig

PPollConfig

PPollConfig

PPoll

SendList

PPollUnconfig

Yes Yes Yes

Configure Transducer 1
for Parallel Ports2

Computer

GPIB Cable GPIB Cable GPIB CableGPIB CableGPIB Cable GPIB Cable

Configure Transducer 3
for Parallel Ports

UNIT 2
Temperature
Transducer

Power
Supply

UNIT 3
Temperature
Transducer

Power
Supply

No

CLEAN UP9

Yes

Are All Metals
Ready?
© National Instruments Corporation 2-19 GPIB User Manual for Windows 95/Windows NT

Chapter 2 Application Examples

for

rd

 to

sed

es.

ata
Example 9: Non-Controller Example
This example uses the GPIB driver in a non-Controller application.

A software engineer has written firmware to emulate a GPIB device
a research project and is testing it using an application that makes
simple GPIB calls. The following steps correspond to the program
flowchart in Figure 2-10:

1. The application initializes the GPIB by bringing the interface boa
in the computer online.

2. The application waits for any of three events to occur: the device
become listen-addressed, become talk-addressed, or receive a
GPIB clear message.

3. After one of the events occurs, the application takes an action ba
upon the event that occurred. If the device was cleared, the
application resets the internal state of the device to default valu
If the device was talk-addressed, it writes data back to the
Controller. If the device was listen-addressed, it reads in new d
from the Controller.
GPIB User Manual for Windows 95/Windows NT 2-20 © National Instruments Corporation

Chapter 2 Application Examples
Figure 2-10. Program Flowchart for Example 9

No

Yes Is This the
Clear Event?

INIT1

Write Out New Data3

Wait to Be Talk
Addressed, Listen

Addressed, or Cleared
2

3

Yes

No Is This the Talk
Addressed Event?

Read In New Data
3

Reset Internal
State

ibwait

ibwrt

ibrd

Data

Data

Device Controller
© National Instruments Corporation 2-21 GPIB User Manual for Windows 95/Windows NT

© National Instruments Corporation 3-1 GPIB User Manual fo
Chapter

3
Developing Your
Application
88

 for
 you

y

oft

nt
t a
This chapter explains how to develop a GPIB application using NI-4
functions and NI-488.2 routines.

Choosing Your Programming Methodology
Based on your development environment, you can select a method
accessing the driver, and based on your GPIB programming needs,
can choose between the NI-488 functions and NI-488.2 routines.

Choosing a Method to Access the GPIB Driver
Applications can access the GPIB dynamic link library (DLL),
gpib-32.dll , either by using an NI-488.2M language interface or b
direct access.

NI-488.2M Language Interfaces
You can use a language interface if your program is written in Micros
Visual C/C++ (2.0 or higher), Borland C/C++ (4.0 or higher), or
Microsoft Visual Basic (4.0 or higher). Otherwise, you must access
gpib-32.dll directly.

Direct Entry Access
You can access the DLL directly from any programming environme
that allows you to request addresses of variables and functions tha
DLL exports. gpib-32.dll exports pointers to each of the global
variables and all the NI-488 and NI-488.2 calls.
r Windows 95/Windows NT

Chapter 3 Developing Your Application

t
 the

h
88

d
r
ent

488
r

l

th

t

 from

y
Choosing between NI-488 Functions and NI-488.2 Routines
The GPIB software includes two distinct sets of subroutines to mee
your application needs. Both of these sets, the NI-488 functions and
NI-488.2 routines, are compatible across computer platforms and
operating systems, so you can port programs to other platforms wit
little or no source code modification. For most applications, the NI-4
functions are sufficient. You should use the NI-488.2 routines if you
have a complex configuration with one or more interface boards an
multiple devices. Regardless of which option you choose, the drive
automatically addresses devices and performs other bus managem
operations necessary for device communication.

The following sections describe some differences between NI-488
functions and NI-488.2 routines.

Using NI-488 Functions: One Device for Each Board
If your system has only one device attached to each board, the NI-
functions are probably sufficient for your programming needs. Othe
factors that make the NI-488 functions convenient include the
following:

• You can use NI-488 asynchronous I/O functions (ibcmda , ibrda ,
and ibwrta) to initiate an I/O sequence while maintaining contro
over the CPU for non-GPIB tasks.

• NI-488 functions include built-in file transfer functions (ibrdf and
ibwrtf).

• You can control the bus in non-typical ways or communicate wi
non-compliant devices.

The NI-488 functions consist of high-level (or device) functions tha
hide much of the GPIB management operations and low-level (or
board) functions that offer you more control over the GPIB than
NI-488.2 routines. The following sections describe these different
function types.

Device-Level Functions
Device functions are high-level functions that automatically execute
commands to handle bus management operations such as reading
and writing to devices or polling them for status. If you use device
functions, you do not need to understand GPIB protocol or bus
management. For information about device-level calls and how the
GPIB User Manual for Windows 95/Windows NT 3-2 © National Instruments Corporation

Chapter 3 Developing Your Application

t

IB

l. In
,

le

eed

on

ces,
ng

rted

s
manage the GPIB, refer to the Device-Level Calls and Bus Managemen
section in Chapter 7, GPIB Programming Techniques.

Board-Level Functions
Board functions are low-level functions that perform rudimentary GP
operations. Board functions access the interface board directly and
require you to handle the addressing and bus management protoco
cases when the high-level device functions do not meet your needs
low-level board functions give you the flexibility and control to hand
situations such as the following:

• Communicating with non-compliant (non-IEEE 488.2) devices

• Altering various low-level board configurations

• Managing the bus in non-typical ways

The NI-488 board functions are compatible with, and can be
interspersed within, sequences of NI-488.2 routines. When you use
board functions within a sequence of NI-488.2 routines, you do not n
a prior call to ibfind to obtain a board descriptor. You simply
substitute the board index as the first parameter of the board functi
call. With this flexibility, you can handle non-standard or unusual
situations that you cannot resolve using NI-488.2 routines only.

Using NI-488.2 Routines: Multiple Boards and/or
Multiple Devices
When your system includes a board that must access multiple devi
use the NI-488.2 routines. NI-488.2 routines can perform the followi
tasks with a single call:

• Find all of the Listeners on the bus

• Find a device requesting service

• Determine the state of the SRQ line, or wait for SRQ to be asse

• Address multiple devices to listen

You can mix board-level NI-488 functions with the NI-488.2 routine
to have access to all the NI-488.2 functionality.
© National Instruments Corporation 3-3 GPIB User Manual for Windows 95/Windows NT

Chapter 3 Developing Your Application

ing.

n.
The
you

e

e

n
n

 bit

Checking Status with Global Variables
Each NI-488 function and NI-488.2 routine updates four global
variables to reflect the status of the device or board that you are us
These global status variables are the status word (ibsta), the error
variable (iberr), and the count variables (ibcnt and ibcntl). They
contain useful information about the performance of your applicatio
Your application should check these variables after each GPIB call.
following sections describe each of these global variables and how
can use them in your application.

Note: If your application is a multithreaded application, refer to the Writing
Multithreaded Win32 GPIB Applications section in Chapter 7, GPIB
Programming Techniques.

Status Word (ibsta)
All functions update a global status word, ibsta , which contains
information about the state of the GPIB and the GPIB hardware. Th
value stored in ibsta is the return value of all the NI-488 functions,
except ibfind and ibdev . You can examine various status bits in
ibsta and use that information to make decisions about continued
processing. If you check for possible errors after each call using th
ibsta ERR bit, debugging your application is much easier.

ibsta is a 16-bit value. A bit value of one (1) indicates that a certai
condition is in effect. A bit value of zero (0) indicates that the conditio
is not in effect. Each bit in ibsta can be set for NI-488 device calls
(dev), NI-488 board calls (brd) and NI-488.2 calls, or all (dev, brd).

Table 3-1 shows the condition that each bit position represents, the
mnemonics, and the type of calls for which the bit can be set. For a
detailed explanation of each status condition, refer to Appendix A,
Status Word Conditions.
GPIB User Manual for Windows 95/Windows NT 3-4 © National Instruments Corporation

Chapter 3 Developing Your Application

ach

The language header file included on your distribution disk defines e
of the ibsta status bits. You can test for an ibsta status bit being set
using the bitwise and operator (& in C/C++). For example, the ibsta
ERR bit is bit 15 of ibsta . To check for a GPIB error, use the following
statement after each GPIB call:

if (ibsta & ERR)

printf("GPIB error encountered");

Table 3-1. Status Word Layout

Mnemonic
Bit
Pos.

Hex
Value Type Description

ERR 15 8000 dev, brd GPIB error

TIMO 14 4000 dev, brd Time limit exceeded

END 13 2000 dev, brd END or EOS detected

SRQI 12 1000 brd SRQ interrupt received

RQS 11 800 dev Device requesting service

CMPL 8 100 dev, brd I/O completed

LOK 7 80 brd Lockout State

REM 6 40 brd Remote State

CIC 5 20 brd Controller-In-Charge

ATN 4 10 brd Attention is asserted

TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State

DCAS 0 1 brd Device Clear State
© National Instruments Corporation 3-5 GPIB User Manual for Windows 95/Windows NT

Chapter 3 Developing Your Application

r

d

te
e

e

n to

Error Variable (iberr)
If the ERR bit is set in ibsta , a GPIB error has occurred. When an erro
occurs, the error type is specified by iberr . To check for a GPIB error,
use the following statement after each GPIB call:

if (ibsta &ERR)

printf("GPIB error %d encountered", iberr);

Note: The value in iberr is meaningful as an error type only when the ERR bit
is set in ibsta , indicating that an error has occurred.

For more information about error codes and solutions, refer to
Chapter 4, Debugging Your Application, or Appendix B, Error Codes
and Solutions.

Count Variables (ibcnt and ibcntl)
The count variables are updated after each read, write, or comman
function. In Win32 applications, ibcnt and ibcntl are 32-bit integers.
On some systems, like MS-DOS, ibcnt is a 16-bit integer, and ibcntl
is a 32-bit integer. For cross-platform compatibility, all applications
should use ibcntl . If you are reading data, the count variables indica
the number of bytes read. If you are sending data or commands, th
count variables reflect the number of bytes sent.

Using Win32 Interactive Control to Communicate
with Devices

Before you begin writing your application, you might want to use th
Win32 Interactive Control utility. You can use the Win32 Interactive
Control utility to communicate with your instruments from the
keyboard rather than from an application. You can also use it to lear
communicate with your instruments using the NI-488 functions or
NI-488.2 routines. For specific device communication instructions,
refer to the user manual that came with your instrument. For
information about using the Win32 Interactive Control utility and for
detailed examples, refer to Chapter 6, Win32 Interactive
Control Utility.
GPIB User Manual for Windows 95/Windows NT 3-6 © National Instruments Corporation

Chapter 3 Developing Your Application

,

ll.
Programming Model for NI-488 Applications
This section describes items you should include in your application
provides general program steps, and an NI-488 example.

Items to Include
You should include the following items in your application:

• Header files—In a C application, include the header files
windows.h and decl-32.h . The standard Windows header file,
windows.h , contains definitions used by decl-32.h and
decl-32.h contains prototypes for the GPIB functions and
constants that you can use in your application.

• Error checking—Check for errors after each NI-488 function ca

• Error handling—Declare and define a function to handle GPIB
errors. This function takes the device offline and closes the
application. If the function is declared as:

void gpiberr (char * msg); /*function prototype*/

Then, your application invokes it as follows:

if (ibsta & ERR) {

gpiberr("GPIB error");

}

© National Instruments Corporation 3-7 GPIB User Manual for Windows 95/Windows NT

Chapter 3 Developing Your Application

g
NI-488 Program Shell
Figure 3-1 is a flowchart of the steps to create your application usin
NI-488 functions. The flowchart is for device-level calls.

Figure 3-1. General Program Shell Using NI-488 Device Functions

Yes

No

No

No

Are All Devices
Open?

Make a Device Level Call:
• Send Data to Device (ibwrt)
• Receive Data from Device (ibrd)
• Clear Device (ibclr)
• Serial Poll Device (ibrsp)
and so on

Open Device (ibdev)

Close Device (ibonl)

Yes

Finished GPIB
Programming?

END

Yes

Closed All
Devices?

START
GPIB User Manual for Windows 95/Windows NT 3-8 © National Instruments Corporation

Chapter 3 Developing Your Application

ns
 an
e

ic,

t

ith

S

n

e

ur
ult

 to
e,
ific
NI-488 General Program Steps and Examples
The following steps show you how to use the NI-488 device functio
in your application. The GPIB software includes the source code for
example written in C, devsamp.c , and the source code for the exampl
written to use direct entry to access gpib-32.dll , dlldev.c . The
GPIB software also includes a sample program written in Visual Bas
devsamp.frm .

Step 1. Open a Device
Your first NI-488 function call should be a call to ibdev to open a
device. The ibdev function requires the following parameters:

• Connect board index (typically set to 0, because your board is
GPIB0)

• Primary address for the GPIB instrument (refer to the instrumen
user manual)

• Secondary address for the GPIB instrument (0 if the GPIB
instrument does not use secondary addressing)

• Timeout period (typically set to T10s, which is 10 seconds)

• End-of-transfer mode (typically set to 1 so that EOI is asserted w
the last byte of writes)

• EOS detection mode (0 if the GPIB instrument does not use EO
characters)

When you call ibdev , the driver automatically initializes the GPIB by
sending an Interface Clear (IFC) message and placing the device i
remote programming state. A successful ibdev call returns a unit
descriptor handle, ud, that is used for all NI-488 calls that communicat
with the GPIB instrument.

Step 2. Clear the Device
Use ibclr to clear the device before you configure the device for yo
application. Clearing the device resets its internal functions to a defa
state.

Step 3. Communicate with the Device
After you open and clear the device, your GPIB instrument is ready
receive instructions. If you want to acquire readings from your devic
you can do so in several ways. Each GPIB device has its own spec
© National Instruments Corporation 3-9 GPIB User Manual for Windows 95/Windows NT

Chapter 3 Developing Your Application

our

uire
IB
e

s a

e

ood

uire.

n,
instructions. You should refer to the documentation that came with y
GPIB device to learn how to properly communicate with it. For this
example, assume that the GPIB device can be programmed to acq
readings whenever it is triggered. Furthermore, assume that the GP
device requests service when it has acquired a reading. Given thes
assumptions, the following steps are necessary.

Step 3a.
Program the GPIB device to acquire a reading whenever it receive
GPIB trigger using the ibwrt function. The buffer that you pass to
ibwrt is the command message that programs the device to behav
properly.

Step 3b.
Trigger the device using the ibtrg function.

Step 3c.
Wait for the device to acquire the reading using the ibwait function
with a mask value of RQS | TIMO because the event of interest is the
device’s request for service (RQS). If the ibwait function times out
before the RQS event occurs, the timeout bit (TIMO) is set in the ibsta
value for the call.

Step 3d.
If the wait for the service request succeeded, read the serial poll
response byte and verify that it indicates that the device obtained a g
measurement, using the ibrsp function.

Step 3e.
Read the measurement from the device using the ibrd function and
record it in a list of device measurements.

Repeat steps 3b through 3e for each measurement you want to acq

Step 4. Place the Device Offline before Exiting Your
Application
After you access the GPIB device and before you exit the applicatio
take the device offline using the ibonl function.
GPIB User Manual for Windows 95/Windows NT 3-10 © National Instruments Corporation

Chapter 3 Developing Your Application

at

ll.
Programming Model for NI-488.2 Applications
This section describes items you should include in an application th
uses NI-488.2 routines, provides general program steps, and an
NI-488.2 example.

Items to Include
You should include the following items in an application that uses
NI-488.2 routines:

• Header files—In a C application, include the header files
windows.h and decl-32.h . The standard Windows header file,
windows.h , contains definitions used by decl-32.h and
decl-32.h contains prototypes for the GPIB routines and
constants that you can use in your application.

• Error checking—Check for errors after each NI-488.2 routine ca

• Error handling—Declare and define a function to handle GPIB
errors. This function takes the device offline and closes the
application. If the function is declared as:

void gpiberr (char * msg); /*function prototype*/

Then your application invokes it as follows:

if (ibsta & ERR) {

gpiberr("GPIB error");

}

© National Instruments Corporation 3-11 GPIB User Manual for Windows 95/Windows NT

Chapter 3 Developing Your Application

g
NI-488.2 Program Shell
Figure 3-2 is a flowchart of the steps to create your application usin
NI-488.2 routines.

Figure 3-2. General Program Shell Using NI-488.2 Routines

Yes

Low-Level High-Level

No

No

No

Are All Boards
Initialized?

Make a Low-Level Call:
• Address Devices to Listen (SendSetup)
• Send Data to Addressed Listener
 (SendDataBytes)
• Address Device to Talk (ReceiveSetup)
• Receive Data from Addressed Talker
 (RcvRespMsg)
and so on

Make a High-Level Call:
• Send Data to Device (Send)
• Receive Data from Device (Receive)
• Clear Device (DevClear)
• Serial Poll Device (ReadStatusByte)
and so on

Initialize Specified GPIB
Interface (SendIFC)

Close Board (ibonl)

Making High-Level
or Low-Level Call?

Yes

Finished GPIB
Programming?

END

Yes

Are All Boards
Closed?

START
GPIB User Manual for Windows 95/Windows NT 3-12 © National Instruments Corporation

Chapter 3 Developing Your Application

ur

e

ic,

is

nt

r

ary
tored
es,

se it

o use
t
NI-488.2 General Program Steps and Examples
The following steps show you how to use the NI-488.2 routines in yo
application. The GPIB software includes the source code for an
example written in C, samp4882.c , and the source code for the exampl
written to use direct entry to access the gpib-32.dll , dll4882.c . The
GPIB software also includes a sample program written in Visual Bas
samp4882.frm .

Step 1. Initialization
Use the SendIFC routine to initialize the bus and the GPIB interface
board so the GPIB board is Controller-In-Charge (CIC). The only
argument of SendIFC is the GPIB interface board number, typically
0 for GPIB0.

Step 2. Determine the GPIB Address of Your Device
If you do not know the address of your device, you can use the
FindLstn routine to find all the devices attached to the GPIB. The
FindLstn routine requires the following parameters:

• Interface board number (typically set to 0, because your board
GPIB0)

• A list of primary addresses, terminated with the NOADDR consta

• A list of GPIB addresses of devices found listening on the GPIB

• Limit which is the number of the GPIB addresses to report

The FindLstn routine tests for the presence of all of the primary
addresses that are passed to it. If a device is present at a particula
primary address, then the primary address is stored in the GPIB
addresses list. Otherwise, all secondary addresses of the given prim
address are tested, and the GPIB address of any devices found are s
in the GPIB addresses list. When you have the list of GPIB address
you can determine which one corresponds to your instrument and u
for subsequent NI-488.2 calls.

Alternately, if you already know your GPIB device’s primary and
secondary address, you can create an appropriate GPIB address t
in subsequent NI-488.2 calls, as follows: a GPIB address is a 16-bi
value that contains the primary address in the low byte and the
secondary address in the high byte. If you are not using secondary
© National Instruments Corporation 3-13 GPIB User Manual for Windows 95/Windows NT

Chapter 3 Developing Your Application

y

lue

PIB

an

our

uire
IB

, the

s a

atus
addressing, the secondary address is 0. For example, if the primar
address is 1, then the 16-bit value is 0x01; otherwise, if the primary
address is 1 and the secondary address is 0x67, then the 16-bit va
is 0x6701.

Step 3. Initialize the Device
After you find the device, use the DevClear routine to clear it. The first
argument is the GPIB board number. The second argument is the G
address as determined in step 2.

Step 4. Communicate with the Device
After initialization, your GPIB instrument is ready to receive
instructions. If you want to acquire readings from your device, you c
do so in several ways. Each GPIB device has its own specific
instructions. You should refer to the documentation that came with y
GPIB device to learn how to properly communicate with it. For this
example, assume that the GPIB device can be programmed to acq
readings whenever it is triggered. Furthermore, assume that the GP
device requests service when it has acquired a reading. Given that
following steps are necessary.

Step 4a.
Program the GPIB device to acquire a reading whenever it receive
GPIB trigger using the Send command. The buffer that you pass to
Send is the command message that programs the device to behave
properly.

Step 4b.
Trigger the device using the Trigger routine.

Step 4c.
Wait for the device to acquire the reading using the WaitSRQ routine.

Step 4d.
If the wait for the service request succeeded, read the serial poll st
byte and verify that it indicates that the device obtained a good
measurement, using the ReadStatusByte routine.
GPIB User Manual for Windows 95/Windows NT 3-14 © National Instruments Corporation

Chapter 3 Developing Your Application

uire.

n,

ur
Step 4e.
Read the measurement from the device using the Receive routine and
record it in a list of device measurements.

Repeat steps 4b through 4e for each measurement you want to acq

Step 5. Place the Device Offline before Exiting Your
Application
After you access the GPIB device and before you exit the applicatio
take the device offline using the ibonl function.

Language-Specific Programming Instructions
The following sections describe how to develop, compile, and link yo
Win32 GPIB applications using various programming languages.

Microsoft Visual C/C++ (Version 2.0 or Higher)
Before you compile your Win32 C application, make sure that the
following lines are included at the beginning of your program:

#include <windows.h>

#include "decl-32.h"

To compile and link a Win32 console application named cprog in a
DOS shell, type the following on the command line:

cl cprog.c gpib-32.obj

Borland C/C++ (Version 4.0 or Higher)
Before you compile your Win32 C application, make sure that the
following lines are included at the beginning of your program:

#include <windows.h>

#include "decl-32.h"

To compile and link a Win32 console application named cprog in a
DOS shell, type the following on the command line:

bcc32 -w32 cprog.c borlandc_gpib-32.obj
© National Instruments Corporation 3-15 GPIB User Manual for Windows 95/Windows NT

Chapter 3 Developing Your Application

es,

ch
more
e

on

or
e
Visual Basic (Version 4.0 or Higher)
With Visual Basic, you can access the NI-488 functions as subroutin
using the BASIC keyword CALL followed by the NI-488 function name,
or you can access the NI-488 functions using the il set of functions.
With some of the NI-488 functions and NI-488.2 subroutines (for
example ibrd or Receive), the length of the string buffer is
automatically calculated within the actual function or subroutine, whi
eliminates the need to pass in the length as an extra parameter. For
information about function syntax for Visual Basic, refer to the onlin
help or NI-488.2M Function Reference Manual for Win32.

Before you run your Visual Basic application, include the
niglobal.bas and vbib-32.bas files in your application project file.

Direct Entry with C
The following sections describe how to use direct entry with C.

gpib-32.dll Exports
gpib-32.dll exports pointers to the global variables and all of the
NI-488.2 functions and subroutines. Pointers to the global variables
(ibsta , iberr , ibcnt , and ibcntl) are accessible through these
exported variables:

int *user_ibsta;

int *user_iberr;

int *user_ibcnt;

long *user_ibcntl;

Except for the functions ibbna , ibfind , ibrdf , and ibwrtf , all
the NI-488.2 function and subroutine names are exported from
gpib-32.dll . Thus, to use direct entry to access a particular functi
and to get a pointer to the exported function, you just need to call
GetProcAddress passing the name of the function as a parameter. F
more information about the parameters you use when you invoke th
function, refer to the NI-488.2M Function Reference Manual for Win32
or the online help.

These functions all require an argument that is a name. ibbna requires
a board name, ibfind requires a board or device name, and ibrdf and
ibwrtf require a file name. Because Windows NT supports both
normal (8-bit) and Unicode (16-bit) characters, gpib-32.dll exports
both normal and Unicode versions of these functions. Because
GPIB User Manual for Windows 95/Windows NT 3-16 © National Instruments Corporation

Chapter 3 Developing Your Application

-bit

s

ded

ion

re

ur
Windows 95 does not support 16-bit wide characters, use only the 8
ASCII versions, named ibbnaA , ibfindA , ibrdfA , and ibwrtfA . The
Unicode versions are named ibbnaW , ibfindW , ibrdfW , and ibwrtfW .
You can use either the Unicode or ASCII versions of these function
with Windows NT, but only the ASCII versions with Windows 95.

In addition to pointers to the status variables and a handle to the loa
gpib-32.dll , you must define the direct entry prototypes for the
functions you use in your application. The prototypes for each funct
exported by gpib-32.dll are described in the NI-488.2M Function
Reference Manual for Win32. The NI-488.2M direct entry sample
programs illustrate how to use direct entry to access gpib-32.dll . For
more information about direct entry, refer to the Win32 SDK (Softwa
Development Kit) online help.

Directly Accessing the gpib-32.dll Exports
Make sure that the following lines are included at the beginning of yo
application:

#ifdef __cplusplus

extern "C"{

#endif

#include <windows.h>

#include "decl-32.h"

#ifdef __cplusplus

}

#endif

In your Win32 application, you first need to load gpib-32.dll . The
following code fragment shows you how to call the LoadLibrary
function and check for an error:

HINSTANCE Gpib32Lib = NULL;

Gpib32Lib=LoadLibrary("GPIB-32.DLL");

if (Gpib32Lib == NULL) {

 return FALSE;

}

© National Instruments Corporation 3-17 GPIB User Manual for Windows 95/Windows NT

Chapter 3 Developing Your Application

tion
sses
tion
Next, your Win32 application needs to use GetProcAddress to get the
addresses of the global status variables and functions your applica
needs. The following code fragment shows you how to get the addre
of the pointers to the status variables and any functions your applica
needs:

/* Pointers to NI-488.2 global status variables */

int *Pibsta;

int *Piberr;

long *Pibcntl;

static int(__stdcall *Pibdev)

(int ud, int pad, int sad, int tmo, int eot,

 int eos);

static int(__stdcall *Pibonl)

(int ud, int v);

Pibsta = (int *) GetProcAddress(Gpib32Lib,

(LPCSTR)"user_ibsta");

Piberr = (int *) GetProcAddress(Gpib32Lib,

(LPCSTR)"user_iberr");

Pibcntl = (long *) GetProcAddress(Gpib32Lib,

(LPCSTR)"user_ibcnt");

Pibdev = (int (__stdcall *)

(int, int, int, int, int, int))

GetProcAddress(Gpib32Lib, (LPCSTR)"ibdev");

Pibonl = (int (__stdcall *)(int, int))

GetProcAddress(Gpib32Lib, (LPCSTR)"ibonl");

If GetProcAddress fails, it returns a NULL pointer. The following
code fragment shows you how to verify that none of the calls to
GetProcAddress failed:

if ((Pibsta == NULL) ||

 (Piberr == NULL) ||

 (Pibcntl == NULL) ||

 (Pibdev == NULL) ||

 (Pibonl == NULL)) {

 /* Free the GPIB library */

 FreeLibrary(Gpib32Lib);

 printf("GetProcAddress failed.");

}

GPIB User Manual for Windows 95/Windows NT 3-18 © National Instruments Corporation

Chapter 3 Developing Your Application

u
ur

lp.

ng

der

e
d

t
Your Win32 application needs to dereference the pointer to access
either the status variables or function. The following code shows yo
how to call a function and access the status variable from within yo
application:

dvm = (*Pibdev) (0, 1, 0, T10s, 1, 0);

if (*Pibsta & ERR) {

 printf("Call failed");

}

Before exiting your application, you need to free gpib-32.dll with the
following command:

FreeLibrary(Gpib32Lib);

For more examples of directly accessing gpib-32.dll , refer to the
NI-488.2M direct entry sample programs dlldev.c and dll4882.c ,
installed with the GPIB software. For more information about direct
entry, refer to the Win32 SDK (Software Development Kit) online he

Windows 95: Running Existing GPIB Applications

Running Existing Win32 and Win16 GPIB Applications
Existing Win32 and Win16 GPIB applications run properly under
Windows 95. The GPIB setup program installs necessary driver
components with the GPIB software so Win32 and Win16 GPIB
applications run properly.

Running Existing DOS GPIB Applications
With the GPIB software properly configured, you can run your existi
DOS GPIB applications along with your Win16 and Win32 GPIB
applications. No DOS device driver is required. Make sure that no ol
version of the GPIB DOS device driver is loaded from your
config.sys file, a file located on the boot drive of your computer. Th
older GPIB DOS device driver is loaded with the following comman
line:

device= path /gpib.com

where path is the directory in which you installed the GPIB software
(for example, c:\lat-gpib). Delete this command line to ensure tha
the older GPIB DOS driver does not load.
© National Instruments Corporation 3-19 GPIB User Manual for Windows 95/Windows NT

Chapter 3 Developing Your Application

To run DOS GPIB applications, your system uses a Virtual Device
Driver (VxD), gpibdosk.vxd , and a Win32 executable, gpibdos.exe .
When you install the GPIB software, gpibdosk.vxd and gpibdos.exe
are copied into the Windows system directory, usually
c:\windows\system . If the GPIB software is properly configured to
run your existing DOS GPIB applications, these files load when you
restart your system.

To configure the GPIB software to run your existing DOS GPIB
applications, complete the following steps after you install the GPIB
software and hardware:

1. Select Start»Settings»Control Panel, and double-click on the
System icon. The System Properties dialog box appears.

2. Select the Device Manager tab.

3. Click on the View devices by type button at the top of the page, and
click on the National Instruments GPIB Interfaces icon.

4. Click on the Properties button to display the General property tab
for the GPIB software.

5. Check the Enable Support for DOS GPIB Applications
checkbox and click on the OK button.

6. Restart your system.

You can now run your existing DOS GPIB applications.

Windows NT: Running Existing GPIB Applications
To run existing DOS and Windows GPIB applications under
Windows NT, use the GPIB Virtual Device Driver, gpib-vdd.dll ,
which is installed with your GPIB software.

Running Existing Win32 and Win16 GPIB Applications
Existing Win32 and Win16 GPIB applications run properly under
Windows NT. The GPIB setup program installs necessary driver
components with the GPIB software so Win32 and Win16 GPIB
applications run properly.

Running Existing DOS GPIB Applications
To run DOS GPIB applications, load the special GPIB device driver
gpib-nt.com , instead of gpib.com , which you normally use with
GPIB User Manual for Windows 95/Windows NT 3-20 © National Instruments Corporation

Chapter 3 Developing Your Application

DOS. When you install the GPIB software, gpib-nt.com is copied
into a new subdirectory called doswin16 . To use gpib-nt.com , you
must modify your config.nt file to load gpib-nt.com whenever a
DOS application is executed. The config.nt file is located in your
winnt \system32 directory, where winnt is your Windows NT
directory, for example c:\windows . The GPIB setup program modifies
the config.nt file by adding the following lines:

REM *** To run DOS GPIB applications, uncomment the
REM *** following line
REM device= path \doswin16\gpib-nt.com

where path is the directory in which you installed the GPIB software.

To load gpib-nt.com , locate these lines in your config.nt file and
delete REM from the third line, as follows:

REM *** To run DOS GPIB applications, uncomment the
REM *** following line
device= path \doswin16\gpib-nt.com

where path is the directory in which you installed the GPIB software.
© National Instruments Corporation 3-21 GPIB User Manual for Windows 95/Windows NT

© National Instruments Corporation 4-1 GPIB User Manual fo
Chapter

4
Debugging Your Application
y

rs.

rs,
y.
pear

ld be
This chapter describes several ways to debug your application.

NI Spy
You can use the NI Spy utility to monitor all of the GPIB calls made b
NI applications. Because all applications go through gpib-32.dll , the
GPIB calls made by Win32, Win16, and DOS applications are all
recorded by NI Spy. For more information about the NI Spy utility,
refer to Chapter 5, NI Spy Utility, or use its built-in, context-sensitive
online help.

Global Status Variables
After each function call to your GPIB driver, ibsta , iberr , ibcnt , and
ibcntl are updated before the call returns to your application. You
should check for an error after each GPIB call. Refer to Chapter 3,
Developing Your Application, for more information about how to use
these variables within your program to automatically check for erro

After you determine which GPIB call is failing and note the
corresponding values of the global variables, refer to Appendix A,
Status Word Conditions, and Appendix B, Error Codes and Solutions.
These appendixes can help you interpret the state of the driver.

Win32 Interactive Control
If your application does not automatically check for and display erro
you can locate an error by using the Win32 Interactive Control utilit
Simply issue the same functions or routines, one at a time as they ap
in your application. Because the Win32 Interactive Control utility
returns the status values and error codes after each call, you shou
able to determine which GPIB call is failing. For more information
about the Win32 Interactive Control utility, refer to Chapter 6, Win32
Interactive Control Utility, or the online help.
r Windows 95/Windows NT

Chapter 4 Debugging Your Application

ble
r a

d

After you determine which GPIB call is failing and note the
corresponding values of the global variables, refer to Appendix A,
Status Word Conditions, and Appendix B, Error Codes and Solutions.
These appendixes can help you interpret the state of the driver.

GPIB Error Codes
Table 4-1 lists the GPIB error codes. Remember that the error varia
is meaningful only when the ERR bit in the status variable is set. Fo
detailed description of each error and possible solutions, refer to
Appendix B, Error Codes and Solutions.

Table 4-1. GPIB Error Codes

Error
Mnemonic

iberr
Value Meaning

EDVR 0 System error

ECIC 1 Function requires GPIB board to be CIC

ENOL 2 No Listeners on the GPIB

EADR 3 GPIB board not addressed correctly

EARG 4 Invalid argument to function call

ESAC 5 GPIB board not System Controller as require

EABO 6 I/O operation aborted (timeout)

ENEB 7 Nonexistent GPIB board

EDMA 8 DMA error

EOIP 10 Asynchronous I/O in progress

ECAP 11 No capability for operation

EFSO 12 File system error

EBUS 14 GPIB bus error

ESTB 15 Serial poll status byte queue overflow
GPIB User Manual for Windows 95/Windows NT 4-2 © National Instruments Corporation

Chapter 4 Debugging Your Application

l
. In
 the

d

set
can
r
ay

t is
d
Configuration Errors
Several applications require customized configuration of the GPIB
driver. For example, you might want to terminate reads on a specia
end-of-string character, or you might require secondary addressing
these cases, you can either permanently reconfigure the driver using
GPIB Configuration utility, or temporarily reconfigure the driver while
your application is running using the ibconfig function.

Note: National Instruments recommends using ibconfig to modify the GPIB
driver configuration dynamically.

If your application uses dynamic configuration, it works properly
regardless of the previous configuration of the driver. For more
information, refer to the description of ibconfig in the NI-488.2M
Function Reference Manual for Win32 or the online help.

Timing Errors
If your application fails, but the same calls issued in the Win32
Interactive Control utility are successful, your program might be
issuing the NI-488.2 calls too quickly for your device to process an
respond to them. This problem can also result in corrupted or
incomplete data.

A well-behaved IEEE 488 device should hold off handshaking and
the appropriate transfer rate. If your device is not well-behaved, you
test for and resolve the timing error by single-stepping through you
program and inserting finite delays between each GPIB call. One w
to do this is to have your device communicate its status whenever
possible. Although this method is not possible with many devices, i
usually the best option. Your delays are controlled by the device an
your application can adjust itself and work independently on any

ESRQ 16 SRQ stuck in ON position

ETAB 20 Table problem

Table 4-1. GPIB Error Codes (Continued)

Error
Mnemonic

iberr
Value Meaning
© National Instruments Corporation 4-3 GPIB User Manual for Windows 95/Windows NT

Chapter 4 Debugging Your Application

es

r

g
ur

ce

nd
not
end
, as

C,
platform. Other delay mechanisms probably cause varying delay tim
on different platforms.

Communication Errors
The following sections describe communication errors you might
encounter in your application.

Repeat Addressing
Devices adhering to the IEEE 488.2 standard should remain in thei
current state until specific commands are sent across the GPIB to
change their state. However, some devices require GPIB addressin
before any GPIB activity. Therefore, you might need to configure yo
GPIB driver to perform repeat addressing if your device does not
remain in its currently addressed state. For more information about
reconfiguring your software, refer to Chapter 8, GPIB Configuration
Utility , or to the description of ibconfig (option IbcREADDR) in the
NI-488.2M Function Reference Manual for Win32 or the online help.

Termination Method
You should be aware of the data termination method that your devi
uses. By default, your GPIB software is configured to send EOI on
writes and terminate reads on EOI or a specific byte count. If you se
a command string to your device and it does not respond, it might
be recognizing the end of the command. In that case, you need to s
a termination message, such as <CR> <LF>, after a write command
follows:

ibwrt(dev,"COMMAND\x0A\x0D",9);

Other Errors
If you experience other errors in your application, refer to Appendix
Windows 95: Troubleshooting and Common Questions, or Appendix D,
Windows NT: Troubleshooting and Common Questions, depending
upon which operating system you are using.
GPIB User Manual for Windows 95/Windows NT 4-4 © National Instruments Corporation

© National Instruments Corporation 5-1 GPIB User Manual fo
Chapter

5
NI Spy Utility
nd
nd

lls

This chapter introduces you to NI Spy, a Win32 utility that monitors a
records multiple National Instruments APIs (for example, NI-488.2 a
VISA).

Overview
NI Spy monitors, records, and displays the NI-488 and NI-488.2 ca
made to the GPIB driver from Win32, Win16, and DOS GPIB
applications. It is a useful tool for troubleshooting errors in your
application and for verifying that the communication with your GPIB
instrument is correct.
r Windows 95/Windows NT

Chapter 5 NI Spy Utility

ton
 to

lls.

tion
the
Starting NI Spy
To start NI Spy, select the NI Spy item under Start»Programs»GPIB
Software.

When you launch NI Spy, it displays the main NI Spy window. By
default, capture is off. Start capture by clicking on the blue arrow but
in the NI Spy toolbar. Then, start the GPIB application that you want
monitor. NI Spy records all GPIB calls made to the GPIB driver.
Figure 5-1 shows the main NI Spy window with several recorded ca

Figure 5-1. NI Spy Main Window

Using the NI Spy Online Help
The NI Spy utility has built-in, context-sensitive online help that
describes all NI Spy features. To access it, select Help from the NI Spy
menu. You can also access the online help by clicking on the ques
mark button in the NI Spy toolbar, and then clicking on the area of
screen about which you have a question.
GPIB User Manual for Windows 95/Windows NT 5-2 © National Instruments Corporation

Chapter 5 NI Spy Utility

py

o
 the
Locating Errors with NI Spy
All GPIB calls returned with an error are displayed in red within the
main NI Spy window.

Viewing Properties for Recorded Calls
To see the detailed properties of any call recorded in the main NI S
window, double-click on the call. The Call Properties window appears.
It contains general, input, output, and buffer information. Figure 5-2
shows the Buffer tab for a device-level ibwrt call.

Figure 5-2. NI Spy Buffer Tab for Device-Level ibwrt

Exiting NI Spy
When you exit NI Spy, its current configuration is saved and used t
configure NI Spy when you start it again. Note that unless you save
data captured in NI Spy before you exit, that information is lost.
© National Instruments Corporation 5-3 GPIB User Manual for Windows 95/Windows NT

Chapter 5 NI Spy Utility

and

nd
ce

e
on,
To save the captured data, click on the red X button on the toolbar
select File»Save As to save the data in a .spy file. After you save your
data, select File»Exit to exit the NI Spy utility.

Performance Considerations
NI Spy can slow down the performance of your GPIB application, a
certain configurations of NI Spy have a larger impact on performan
than others. For example, configuring NI Spy to record calls to an
output file or to use full buffers might have a significant impact on th
performance of both your application and your system. For this reas
use NI Spy only while you are debugging your application or in
situations where performance is not critical.
GPIB User Manual for Windows 95/Windows NT 5-4 © National Instruments Corporation

© National Instruments Corporation 6-1 GPIB User Manual fo
Chapter

6
Win32 Interactive
Control Utility
e
ific
to

ity
This chapter introduces you to Win32 Interactive Control, the
interactive control utility you can use to communicate with GPIB
devices interactively.

Overview
With the Win32 Interactive Control utility, you communicate with th
GPIB devices through functions you enter at the keyboard. For spec
information about communicating with your particular device, refer
the manual that came with the device. You can use the Win32
Interactive Control utility to practice communication with the
instrument, troubleshoot problems, and develop your application.

The Win32 Interactive Control utility helps you to learn about your
instrument and to troubleshoot problems by displaying the following
information on your screen after you enter a command:

• Results of the status word (ibsta) in hexadecimal notation

• Mnemonic constant of each bit set in ibsta

• Mnemonic value of the error variable (iberr) if an error exists
(the ERR bit is set in ibsta)

• Count value for each read, write, or command function

• Data received from your instrument

Getting Started with Win32 Interactive Control
This section shows you how to use the Win32 Interactive Control util
to test a sequence of GPIB calls.

To run the Win32 Interactive Control utility, select the Win32
Interactive Control item under Start»Programs»GPIB Software.
r Windows 95/Windows NT

Chapter 6 Win32 Interactive Control Utility

 for

,

he
 you

se
When the Win32 Interactive Control utility starts, it displays the
following banner message:

Win32 Interactive Control

Copyright 1996 National Instruments Corporation

All rights reserved

Type `help’ for help or `q’ to quit

:

First, you must open either a board handle or device handle to use
further GPIB calls. Use ibdev to open a device handle, ibfind to open
a board handle, or the set 488.2 command to switch to a
488.2 prompt. For help on any Win32 Interactive Control command
type in help followed by the command, for example help ibdev or
help set .

If you want to use device-level calls, open a device handle using ibdev .
The following example shows you how to use ibdev to open a device,
assign it to access board gpib0 , choose a primary address of 6 with no
secondary address, set a timeout of 10 seconds, enable the END
message, and disable the EOS mode:

: ibdev

 enter board index: 0

 enter primary address: 6

 enter secondary address: 0

 enter timeout: T10s

 enter ‘EOI on last byte’ flag: 1

 enter end-of-string mode/byte: 0

ud0:

If you enter a command and no parameters, you are prompted for t
necessary arguments. If you already know the required arguments,
can enter them from the command line, as follows:

: ibdev 0 6 0 T10s 1 0

ud0:

The new prompt, ud0 , represents a device-level handle that you can u
for further GPIB calls. To clear the device, use ibclr , as follows:

ud0: ibclr

[0100] (cmpl)
GPIB User Manual for Windows 95/Windows NT 6-2 © National Instruments Corporation

Chapter 6 Win32 Interactive Control Utility

ou
To write data to the device, use ibwrt , as follows. Make sure that you
refer to the instrument user manual that came with your GPIB
instrument for specific command messages.

ud0: ibwrt

 enter string: "*RST; VAC; AUTO; TRIGGER 2; *SRE 16"

[0100] (cmpl)

count: 35

Or, equivalently:

ud0: ibwrt "*RST; VAC; AUTO; TRIGGER 2; *SRE 16"

[0100] (cmpl)

count: 35

To send a trigger, use ibtrg , as follows:

ud0: ibtrg

[0100] (cmpl)

To read data from your device, use ibrd . The data that is read from the
instrument is displayed. For example, to read 18 bytes, enter the
following:

ud0: ibrd

 enter byte count: 18

[0100] (cmpl)

count: 18

4e 44 43 56 20 30 30 30 N D C V 0 0 0

2e 30 30 34 37 45 2b 30 . 0 0 4 7 E + 0

0a 0a . .

Or, equivalently:

ud0: ibrd 18

[0100] (cmpl)

count: 18

4e 44 43 56 20 30 30 30 N D C V 0 0 0

2e 30 30 34 37 45 2b 30 . 0 0 4 7 E + 0

0a 0a . .

When you are finished communicating with the device, make sure y
put it offline using the ibonl command, as follows:

ud0: ibonl 0

[0100] (cmpl)

:

© National Instruments Corporation 6-3 GPIB User Manual for Windows 95/Windows NT

Chapter 6 Win32 Interactive Control Utility

er

a
>.

or

The ibonl command properly closes the device handle and the ud0
prompt is no longer present.

Win32 Interactive Control Syntax
The following special rules apply to making calls from theWin32
Interactive Control utility:

• The ud or BoardId parameter is implied by the Win32 Interactive
Control prompt, therefore it is never included in the call.

• The count parameter to functions is unnecessary because buff
lengths are automatically determined by Win32 Interactive
Control.

• Function return values are handled automatically by Win32
Interactive Control. In addition to printing out the return ibsta
value for the function, it also prints other return values.

• If you do not know what parameters are appropriate to pass to
given function call, type in the function name and press <Enter
The Win32 Interactive Control utility then prompts you for each
required parameter.

Number Syntax
You can enter numbers in either hexadecimal or decimal format.

Hexadecimal numbers—You must prefix hexadecimal numbers
with 0x. For example, ibpad 0x16 sets the primary address to
16 hexadecimal (22 decimal).

Decimal numbers—Enter the number only. For example, ibpad 22 sets
the primary address to 22 decimal.

String Syntax
You can enter strings as an ASCII character sequence, hex bytes,
special symbols.

ASCII character sequence—You must enclose the entire sequence in
quotation marks.

Hex byte—You must use a backslash character and an x followed by the
hex value. For example, hex 40 is represented by \x40 .
GPIB User Manual for Windows 95/Windows NT 6-4 © National Instruments Corporation

Chapter 6 Win32 Interactive Control Utility

e

he

e
dary

of

 the
Special symbols—Some instruments require special termination or
end-of-string (EOS) characters that indicate to the device that a
transmission has ended. The two most common EOS characters ar\r
and \n . \r represents a carriage return character and \n represents a
linefeed character. You can use these special characters to insert t
carriage return and linefeed characters into a string, as in
"F3R5T1\r\n" .

Address Syntax
Many of the NI-488.2 routines have an address or address list
parameter. An address is a 16-bit representation of the GPIB devic
address. The primary address is stored in the low byte and the secon
address, if any, is stored in the high byte. For example, a device at
primary address 6 and secondary address 0x67 has an address of
0x6706. A NULL address is represented as 0xffff. An address list is
represented by a comma-separated list of addresses, such as 1,2,3 .

Win32 Interactive Control Commands
Tables 6-1 and 6-2 summarize the syntax of NI-488 functions in the
Win32 Interactive Control utility. Table 6-3 summarizes the syntax
NI-488.2 routines in the Win32 Interactive Control utility. Table 6-4
summarizes the auxiliary functions that you can use in the Win32
Interactive Control utility. For more information about the function
parameters, use the online help. If you enter only the function name,
Win32 Interactive Control utility prompts you for parameters.
© National Instruments Corporation 6-5 GPIB User Manual for Windows 95/Windows NT

Chapter 6 Win32 Interactive Control Utility
Table 6-1. Syntax for Device-Level NI-488 Functions in Win32 Interactive Control

Syntax Description

ibask option Return configuration information where option is a mnemonic for a
configuration parameter

ibbna bname Change access board of device where bname is symbolic name of new
board

ibclr Clear specified device

ibconfig option

value

Alter configurable parameters where option is mnemonic for a
configuration parameter

ibdev BdIndx pad

sad tmo eot eos

Open an unused device; ibdev parameters are BdIndx pad sad tmo

eot eos

ibeos v Change/disable EOS message

ibeot v Enable/disable END message

ibln pad sad Check for presence of device on the GPIB at pad , sad

ibloc Go to local

ibonl v Place device online or offline

ibpad v Change primary address

ibpct Pass control

ibppc v Parallel poll configure

ibrd count Read data where count is the bytes to read

ibrda count Read data asynchronously where count is the bytes to read

ibrdf flname Read data to file where flname is pathname of file to read

ibrpp Conduct a parallel poll

ibrsp Return serial poll byte

ibsad v Change secondary address
GPIB User Manual for Windows 95/Windows NT 6-6 © National Instruments Corporation

Chapter 6 Win32 Interactive Control Utility

ibstop Abort asynchronous operation

ibtmo v Change/disable time limit

ibtrg Trigger selected device

ibwait mask Wait for selected event where mask is a hex or decimal integer or a list of
mask bit mnemonics, such as ibwait TIMO CMPL

ibwrt wrtbuf Write data

ibwrta wrtbuf Write data asynchronously

ibwrtf flname Write data from a file where flname is pathname of file to write

Table 6-1. Syntax for Device-Level NI-488 Functions in Win32 Interactive Control (Continued)

Syntax Description
© National Instruments Corporation 6-7 GPIB User Manual for Windows 95/Windows NT

Chapter 6 Win32 Interactive Control Utility
Table 6-2. Syntax for Board-Level NI-488 Functions in Win32 Interactive Control

Syntax Description

ibask option Return configuration information where option is a mnemonic for a
configuration parameter

ibcac v Become active Controller

ibcmd cmdbuf Send commands

ibcmda cmdbuf Send commands asynchronously

ibconfig option
value

Alter configurable parameters where option is mnemonic for a
configuration parameter

ibdma v Enable/disable DMA

ibeos v Change/disable EOS message

ibeot v Enable/disable END message

ibfind udname Return unit descriptor where udname is the symbolic name of board
(for example, gpib0)

ibgts v Go from Active Controller to standby

ibist v Set/clear ist

iblines Read the state of all GPIB control lines

ibln pad sad Check for presence of device on the GPIB at pad , sad

ibloc Go to local

ibonl v Place device online or offline

ibpad v Change primary address

ibppc v Parallel poll configure

ibrd count Read data where count is the bytes to read

ibrda count Read data asynchronously where count is the bytes to read

ibrdf flname Read data to file where flname is pathname of file to read
GPIB User Manual for Windows 95/Windows NT 6-8 © National Instruments Corporation

Chapter 6 Win32 Interactive Control Utility
ibrpp Conduct a parallel poll

ibrsc v Request/release system control

ibrsv v Request service

ibsad v Change secondary address

ibsic Send interface clear

ibsre v Set/clear remote enable line

ibstop Abort asynchronous operation

ibtmo v Change/disable time limit

ibwait mask Wait for selected event where mask is a hex or decimal integer or a list
of mask bit mnemonics, such as ibwait TIMO CMPL

ibwrt wrtbuf Write data

ibwrta wrtbuf Write data asynchronously

ibwrtf flname Write data from a file where flname is pathname of file to write

Table 6-2. Syntax for Board-Level NI-488 Functions in Win32 Interactive Control (Continued)

Syntax Description
© National Instruments Corporation 6-9 GPIB User Manual for Windows 95/Windows NT

Chapter 6 Win32 Interactive Control Utility
Table 6-3. Syntax for NI-488.2 Routines in Win32 Interactive Control

Routine Syntax Description

AllSpoll addrlist Serial poll multiple devices

DevClear address Clear a device

DevClearList addrlist Clear multiple devices

EnableLocal addrlist Enable local control

EnableRemote addrlist Enable remote control

FindLstn padlist limit Find all Listeners

FindRQS addrlist Find device asserting SRQ

PassControl address Pass control to a device

PPoll Parallel poll devices

PPollConfig address dataline
lineSense

Configure device for parallel poll

PPollUnconfig addrlist Unconfigure device for parallel poll

RcvRespMsg count termination Receive response message

ReadStatusByte address Serial poll a device

Receive address count termination Receive data from a device

ReceiveSetup address Receive setup

ResetSys addrlist Reset multiple devices

Send address buffer eotmode Send data to a device

SendCmds buffer Send command bytes

SendDataBytes buffer eotmode Send data bytes

SendIFC Send interface clear

SendList addrlist buffer eotmode Send data to multiple devices
GPIB User Manual for Windows 95/Windows NT 6-10 © National Instruments Corporation

Chapter 6 Win32 Interactive Control Utility
SendLLO Put devices in local lockout

SendSetup addrlist Send setup

SetRWLS addrlist Put devices in remote with lockout state

TestSRQ Test for service request

TestSys addrlist Cause multiple devices to perform self-tests

Trigger address Trigger a device

TriggerList addrlist Trigger multiple devices

WaitSRQ Wait for service request

Table 6-3. Syntax for NI-488.2 Routines in Win32 Interactive Control (Continued)

Routine Syntax Description
© National Instruments Corporation 6-11 GPIB User Manual for Windows 95/Windows NT

Chapter 6 Win32 Interactive Control Utility
Table 6-4. Auxiliary Functions in Win32 Interactive Control

Function Description

set udname Select active device or board where udname is the symbolic name of the new
device or board (for example, dev1 or gpib0). Call ibfind or ibdev initially
to open each device or board.

set 488.2 v Enter 488.2 mode for board v .

help Display the Win32 Interactive Control utility online help.

help option Display help information about option , where option is any NI-488,
NI-488.2, or auxiliary call (for example, help ibwrt or help set).

! Repeat previous function.

- Turn OFF display.

+ Turn ON display.

n * function Execute function n times where function represents the correct Win32
Interactive Control function syntax.

n * ! Execute previous function n times.

$ filename Execute indirect file where filename is the pathname of a file that contains
Win32 Interactive Control functions to be executed.

buffer option Set type of display used for buffers. Valid options are full , brief , ascii ,
and off . Default is full .

q Exit or quit.
GPIB User Manual for Windows 95/Windows NT 6-12 © National Instruments Corporation

Chapter 6 Win32 Interactive Control Utility

d is

e
ic.
ng

itted
Status Word
In the Win32 Interactive Control utility, all NI-488 functions (except
ibfind and ibdev) and NI-488.2 routines return the status word
ibsta in two forms: a hex value in square brackets and a list of
mnemonics in parentheses. In the following example, the status wor
on the second line, showing that the write operation completed
successfully:

ud0: ibwrt "f2t3x"

[0100] (cmpl)

count: 5

ud0:

For more information about the status word, refer to Chapter 3,
Developing Your Application.

Error Information
If an NI-488 function or NI-488.2 routine completes with an error, th
Win32 Interactive Control utility displays the relevant error mnemon
In the following example, an error condition EBUS has occurred duri
a data transfer:

w

ud0: ibwrt "f2t3x"

[8100] (err cmpl)

error: EBUS

count: 1

ud0:

In this example, the addressing command bytes could not be transm
to the device. This indicates that either the device that ud0 represents is
powered off, or the GPIB cable is disconnected.

For a detailed list of the error codes and their meanings, refer to
Chapter 4, Debugging Your Application.
© National Instruments Corporation 6-13 GPIB User Manual for Windows 95/Windows NT

Chapter 6 Win32 Interactive Control Utility

ty
 the

ion
nt
Count Information
When an I/O function completes, the Win32 Interactive Control utili
displays the actual number of bytes sent or received, regardless of
existence of an error condition.

If one of the addresses in an address list of an NI-488.2 routine is
invalid, then the error is EARG and the Win32 Interactive Control
utility displays the index of the invalid address as the count.

The count has a different meaning depending on which NI-488 funct
or NI-488.2 routine is called. For the correct interpretation of the cou
return, refer to the function descriptions in the NI-488.2M Function
Reference Manual for Win32 or the online help.
GPIB User Manual for Windows 95/Windows NT 6-14 © National Instruments Corporation

© National Instruments Corporation 7-1 GPIB User Manual fo
Chapter

7
GPIB Programming
Techniques
and

is

re

r
 the

e
hth

ach

 not
OI
This chapter describes techniques for using some NI-488 functions
NI-488.2 routines in your application.

For more information about each function or routine, refer to the
NI-488.2M Function Reference Manual for Win32 or the online help.

Termination of Data Transfers
GPIB data transfers are terminated either when the GPIB EOI line
asserted with the last byte of a transfer or when a preconfigured
end-of-string (EOS) character is transmitted. By default, the GPIB
driver asserts EOI with the last byte of writes and the EOS modes a
disabled.

You can use the ibeot function to enable or disable the end of
transmission (EOT) mode. If EOT mode is enabled, the GPIB drive
asserts the GPIB EOI line when the last byte of a write is sent out on
GPIB. If it is disabled, the EOI line is not asserted with the last byte of
a write.

You can use the ibeos function to enable, disable, or configure the
EOS modes. EOS mode configuration includes the following
information:

• A 7-bit or 8-bit EOS byte.

• EOS comparison method—This indicates whether the EOS byt
has seven or eight significant bits. For a 7-bit EOS byte, the eig
bit of the EOS byte is ignored.

• EOS write method—If this is enabled, the GPIB driver
automatically asserts the GPIB EOI line when the EOS byte is
written to the GPIB. If the buffer passed into an ibwrt call contains
five occurrences of the EOS byte, the EOI line is asserted as e
of the five EOS bytes are written to the GPIB. If an ibwrt buffer
does not contain an occurrence of the EOS byte, the EOI line is
asserted (unless the EOT mode is enabled, in which case the E
line is asserted with the last byte of the write).
r Windows 95/Windows NT

Chapter 7 GPIB Programming Techniques

s

,

te

ead.

ocol

.

f
d
ts.
 the

f
lly

able

tes
s.
• EOS read method—If this is enabled, the GPIB driver terminate
ibrd , ibrda , and ibrdf calls when the EOS byte is detected on
the GPIB, when the GPIB EOI line is asserted, or when the
specified count is reached. If the EOS read method is disabled
ibrd , ibrda , and ibrdf calls terminate only when the GPIB EOI
line is asserted or the specified count has been read.

You can use the ibconfig function to configure the software to
indicate whether the GPIB EOI line was asserted when the EOS by
was read in. Use the IbcEndBitIsNormal option to configure the
software to report only the END bit in ibsta when the GPIB EOI line
is asserted. By default, the GPIB driver reports END in ibsta when
either the EOS byte is read in or the EOI line is asserted during a r

High-Speed Data Transfers (HS488)
National Instruments has designed a high-speed data transfer prot
for IEEE 488 called HS488. This protocol increases performance for
GPIB reads and writes up to 8 Mbytes/s, depending on your system

HS488 is a superset of the IEEE 488 standard; thus, you can mix
IEEE 488.1, IEEE 488.2, and HS488 devices in the same system. I
HS488 is enabled, the TNT4882C hardware implements high-spee
transfers automatically when communicating with HS488 instrumen
If you attempt to enable HS488 on a GPIB board that does not have
TNT4882C hardware, the ECAP error code is returned.

Enabling HS488
To enable HS488 for your GPIB board, use the ibconfig function
(option IbcHSCableLength). The value passed to ibconfig should
specify the number of meters of cable in your GPIB configuration. I
you specify a cable length that is much smaller than what you actua
use, the transferred data could become corrupted. If you specify a c
length longer than what you actually use, the data is transferred
successfully, but more slowly than if you specified the correct cable
length.

In addition to using ibconfig to configure your GPIB board for
HS488, the Controller-In-Charge must send out GPIB command by
(interface messages) to configure other devices for HS488 transfer
GPIB User Manual for Windows 95/Windows NT 7-2 © National Instruments Corporation

Chapter 7 GPIB Programming Techniques

 the

 next

8

e
l

em.
rate

15

t

ter
/s.
 to

ses.
 can
ters
If you are using device-level calls, the GPIB software automatically
sends the HS488 configuration message to devices. If you enabled
HS488 protocol in the GPIB Configuration utility, the GPIB software
sends out the HS488 configuration message when you use ibdev to
bring a device online. If you call ibconfig to change the GPIB cable
length, the GPIB software sends out the HS488 message again, the
time you call a device-level function.

If you are using board-level functions or NI-488.2 routines and you
want to configure devices for high-speed, you must send the HS48
configuration messages using ibcmd or SendCmds. The HS488
configuration message is made up of two GPIB command bytes. Th
first byte, the Configure Enable (CFE) message (hex 1F), places al
HS488 devices into their configuration mode. Non-HS488 devices
should ignore this message. The second byte is a GPIB secondary
command that indicates the number of meters of cable in your syst
It is called the Configure (CFGn) message. Because HS488 can ope
only with cable lengths of 1 to 15 m, only CFGn values of 1 through
(hex 61 through 6F) are valid. If the cable length was configured
properly in the GPIB Configuration utility, you can determine how
many meters of cable are in your system by calling ibask (option
IbaHSCableLength) in your application. For more information abou
CFE and CFGn messages, refer to Appendix A, Multiline Interface
Messages, in the NI-488.2M Function Reference Manual for Win32 or
the online help.

System Configuration Effects on HS488
Maximum HS488 data transfer rates can be limited by your host
computer and GPIB system setup. For example, when using a
PC-compatible computer with PCI bus, the maximum obtainable
transfer rate is 8 Mbytes/s, but when using a PC-compatible compu
with ISA bus, the maximum transfer rate obtainable is only 2 Mbytes
The same IEEE 488 cabling constraints for a 350 ns T1 delay apply
HS488. As you increase the amount of cable in your GPIB
configuration, the maximum data transfer rate using HS488 decrea
For example, two HS488 devices connected by two meters of cable
transfer data faster than four HS488 devices connected by four me
of cable.
© National Instruments Corporation 7-3 GPIB User Manual for Windows 95/Windows NT

Chapter 7 GPIB Programming Techniques

e

ask
is

ose

ice.

y
h

t
Waiting for GPIB Conditions
You can use the ibwait function to obtain the current ibsta value or
to suspend your application until a specified condition occurs on th
GPIB. If you use ibwait with a parameter of zero, it immediately
updates ibsta and returns. If you want to use ibwait to wait for one
or more events to occur, pass a wait mask to the function. The wait m
should always include the TIMO event; otherwise, your application
suspended indefinitely until one of the wait mask events occurs.

Asynchronous Event Notification in Win32
GPIB Applications

Win32 GPIB applications can asynchronously receive event
notifications using the ibnotify function. This function is useful if
you want your application to be notified asynchronously about the
occurrence of one or more GPIB events. For example, you might cho
to use ibnotify if your application only needs to interact with your
GPIB device when it is requesting service. After calling ibnotify ,
your application does not need to check the status of your GPIB dev
Then, when your GPIB device requests service, the GPIB driver
automatically notifies your application that the event has occurred b
invoking a callback function. The callback function is registered wit
the GPIB driver when the ibnotify call is made.

Calling the ibnotify Function
ibnotify has the following function prototype:

ibnotify (

int ud,// unit descriptor

int mask,// bit mask of GPIB events

GpibNotifyCallback_t Callback,

// callback function

void * RefData// user-defined reference data

)

Both board-level and device-level ibnotify calls are supported by the
GPIB driver. If you are using device-level calls, you call ibnotify
with a device handle for ud and a mask of RQS, CMPL, END, or TIMO.
If you are using board-level calls, you call ibnotify with a board
handle for ud and a mask of any values except RQS or ERR. Note tha
GPIB User Manual for Windows 95/Windows NT 7-4 © National Instruments Corporation

Chapter 7 GPIB Programming Techniques

ht

sed

s of
 was

e

y

t

the ibnotify mask bits are identical to the ibwait mask bits. In the
example of waiting for your GPIB device to request service, you mig
choose to pass ibnotify a mask with RQS (for device-level) or SRQI
(for board-level).

The callback function that you register with the ibnotify call is
invoked by the GPIB driver when one or more of the mask bits pas
to ibnotify is TRUE. The function prototype of the callback is as
follows:

int __stdcall Callback (

int ud,// unit descriptor

int ibsta,// ibsta value

int iberr,// iberr value

long ibcntl,// ibcntl value

void * RefData// user-defined reference data

)

The callback function is passed a unit descriptor, the current value
the GPIB global variables, and the user-defined reference data that
passed to the original ibnotify call. The GPIB driver interprets the
return value for the callback as a mask value that is used to
automatically rearm the callback if it is non-zero. For a complete
description of ibnotify , refer to the NI-488.2M Function Reference
Manual for Win32 or the online help.

Note: The ibnotify callback is executed in a separate thread of execution from th
rest of your application. If your application will be performing other GPIB
operations while it is using ibnotify , you should use the per-thread GPIB
globals that are provided by the ThreadIbsta , ThreadIberr , ThreadIbcnt ,
and ThreadIbcntl functions described in the Writing Multithreaded Win32
GPIB Applications section of this chapter. In addition, if your application
needs to share global variables with the callback, you should use a
synchronization primitive (for example, semaphore) to protect access to an
globals. For more information about the use of synchronization primitives,
refer to the documentation about using Win32 synchronization objects that
came with your development tools.

ibnotify Programming Example
The following code is an example of how you can use ibnotify in
your application. Assume that your GPIB device is a multimeter tha
you program it to acquire a reading by sending “SEND DATA” . The
multimeter requests service when it has a reading ready, and each
reading is a floating point value.
© National Instruments Corporation 7-5 GPIB User Manual for Windows 95/Windows NT

Chapter 7 GPIB Programming Techniques

bals
n:

e
In this example, globals are shared by the Callback thread and the
main thread, and the access of the globals is not protected by
synchronization. In this case, synchronization of access to these glo
is not necessary because of the way they are used in the applicatio
only a single thread is writing the global values and that thread only
adds information (increases the count or adds another reading to th
array of floats).

int __stdcall MyCallback (int ud, int LocalIbsta, int LocalIberr,

long LocalIbcntl, void *RefData);

int ReadingsTaken = 0;

float Readings[1000];

BOOL DeviceError = FALSE;

char expectedResponse = 0x43;

int main()

{

int ud;

// Assign a unique identifier to the device and store it in the

// variable ud. ibdev opens an available device and assigns it to

// access GPIB0 with a primary address of 1, a secondary address of 0,

// a timeout of 10 seconds, the END message enabled, and the EOS mode

// disabled. If ud is less than zero, then print an error message

// that the call failed and exit the program.

ud = ibdev (0,// connect board

 1, // primary address of GPIB device

 0, // secondary address of GPIB device

 T10s, // 10 second I/O timeout

 1, // EOT mode turned on

 0); // EOS mode disabled

if (ud < 0) {

printf ("ibdev failed.\n");

return 0;

}

// Issue a request to the device to send the data. If the ERR bit

// is set in ibsta, then print an error message that the call failed

// and exit the program.

ibwrt (ud, "SEND DATA", 9L);

if (ibsta & ERR) {

printf ("unable to write to device.\n");

return 0;
GPIB User Manual for Windows 95/Windows NT 7-6 © National Instruments Corporation

Chapter 7 GPIB Programming Techniques
}

// set up the asynchronous event notification on RQS

ibnotify (ud, RQS, MyCallback, NULL);

if (ibsta & ERR) {

printf ("ibnotify call failed.\n");

return 0;

}

while ((ReadingsTaken < 1000) && !(DeviceError)) {

// Your application does useful work here. For example, it

// might process the device readings or do any other useful work.

}

// disable notification

ibnotify (ud, 0, NULL, NULL);

// Call the ibonl function to disable the hardware and software.

ibonl (ud, 0);

return 1;

}

int __stdcall MyCallback (int LocalUd, int LocalIbsta, int LocalIberr,

long LocalIbcntl, void *RefData)

{

char SpollByte;

char ReadBuffer[40];

// If the ERR bit is set in LocalIbsta, then print an error

// message and return.

if (LocalIbsta & ERR) {

printf ("GPIB error %d has occurred. No more callbacks.\n",

LocalIberr);

DeviceError = TRUE;

return 0;

}

// Read the serial poll byte from the device. If the ERR bit is set

// in ibsta, then print an error message and return.

LocalIbsta = ibrsp (LocalUd, &SpollByte);

if (LocalIbsta & ERR) {

printf ("ibrsp failed. No more callbacks.\n");
© National Instruments Corporation 7-7 GPIB User Manual for Windows 95/Windows NT

Chapter 7 GPIB Programming Techniques
DeviceError = TRUE;

return 0;

}

// If the returned status byte equals the expected response, then

// the device has valid data to send; otherwise it has a fault

// condition to report.

if (SpollByte != expectedResponse) {

printf("Device returned invalid response. Status byte = 0x%x\n",

 SpollByte);

DeviceError = TRUE;

return 0;

}

// Read the data from the device. If the ERR bit is set in ibsta,

// then print an error message and return.

LocalIbsta = ibrd (LocalUd, ReadBuffer, 40L);

if (LocalIbsta & ERR) {

printf ("ibrd failed. No more callbacks.\n");

DeviceError = TRUE;

return 0;

}

// The string returned by ibrd is a binary string whose length is

// specified by the byte count in ibcntl. However, many GPIB

// instruments return ASCII data strings and this example makes this

// assumption. Because of this, it is possible to add a NULL

// character to the end of the data received and use the printf()

// function to display the ASCII data. The following code

// illustrates that.

ReadBuffer[ibcntl] = ‘\0’;

// Convert the data into a numeric value.

sscanf (ReadBuffer, "%f", &Readings[ReadingsTaken]);

// Display the data.

printf(“Reading : %f\n”, Readings[ReadingsTaken]);

ReadingsTaken += 1;

if (ReadingsTaken >= 1000) {

return 0;

}

GPIB User Manual for Windows 95/Windows NT 7-8 © National Instruments Corporation

Chapter 7 GPIB Programming Techniques

PIB

rm
,

alls,
f the

ead
the
bal
e is
else {

// Issue a request to the device to send the data and rearm

// callback on RQS.

LocalIbsta = ibwrt (LocalUd, "SEND DATA", 9L);

if (LocalIbsta & ERR) {

printf ("ibwrt failed. No more callbacks.\n");

DeviceError = TRUE;

return 0;

}

else {

return RQS;

}

}

}

Writing Multithreaded Win32 GPIB Applications
If you are writing a multithreaded GPIB application and you plan to
make all of your GPIB calls from a single thread, you can safely
continue to use the traditional GPIB global variables (ibsta , iberr ,
ibcnt , ibcntl). The GPIB global variables are defined on a
per-process basis, so each process accesses its own copy of the G
globals.

If you are writing a multithreaded GPIB application and you plan to
make GPIB calls from more than a single thread, you cannot safely
continue to use the traditional GPIB global variables without some fo
of synchronization (for example, a semaphore). To understand why
refer to the following example.

Assume that a process has two separate threads that make GPIB c
thread #1 and thread #2. Just as thread #1 is about to examine one o
GPIB globals, it gets preempted and thread #2 is allowed to run. Thr
#2 proceeds to make several GPIB calls that automatically update
GPIB globals. Later, when thread #1 is allowed to run, the GPIB glo
that it is ready to examine is no longer in a known state and its valu
no longer reliable.
© National Instruments Corporation 7-9 GPIB User Manual for Windows 95/Windows NT

Chapter 7 GPIB Programming Techniques

les.

fore
 the
se
g

ols.

f
s a

 set

als,
or

als
This example illustrates a well-known multithreading problem. It is
unsafe to access process-global variables from multiple threads of
execution. You can avoid this problem in two ways:

• Use synchronization to protect access to process-global variab

• Do not use process-global variables.

If you choose to implement the synchronization solution, you must
ensure that the code making GPIB calls and examining the GPIB
globals modified by a GPIB call is protected by a synchronization
primitive. For example, each thread might acquire a semaphore be
making a GPIB call and then release the semaphore after examining
GPIB globals modified by the call. For more information about the u
of synchronization primitives, refer to the documentation about usin
Win32 synchronization objects that came with your development to

If you choose not to use process-global variables, you can access
per-thread copies of the GPIB global variables using a special set o
GPIB calls. Whenever a thread makes a GPIB call, the driver keep
private copy of the GPIB globals for that thread. The driver keeps a
separate private copy for each thread. The following code shows the
of functions you can use to access these per-thread GPIB global
variables:

int ThreadIbsta(); // return thread-specific ibsta

int ThreadIberr(); // return thread-specific iberr

int ThreadIbcnt(); // return thread-specific ibcnt

long ThreadIbcntl(); // return thread-specific ibcntl

In your application, instead of accessing the per-process GPIB glob
substitute a call to get the corresponding per-thread GPIB global. F
example, the following line of code:

if (ibsta & ERR)

Could be replaced by:

if (ThreadIbsta() & ERR)

A quick way to convert your application to use per-thread GPIB glob
is to add the following #define lines at the top of your C file:

#define ibsta ThreadIbsta()

#define iberr ThreadIberr()

#define ibcnt ThreadIbcnt()

#define ibcntl ThreadIbcntl()
GPIB User Manual for Windows 95/Windows NT 7-10 © National Instruments Corporation

Chapter 7 GPIB Programming Techniques

r.

IB
dle

 to

:

C

the

,
the

e
nt
ld

ard.
Note: If you are using ibnotify in your application (see the Asynchronous Event
Notification in Win32 GPIB Applications section of this chapter) the ibnotify
callback is executed in a separate thread that is created by the GPIB drive
Therefore, if your application makes GPIB calls from the ibnotify callback
function and makes GPIB calls from other places, you must use the
ThreadIbsta , ThreadIberr , ThreadIbcnt , and ThreadIbcntl functions
described in this section, instead of the per-process GPIB globals.

Device-Level Calls and Bus Management
The NI-488 device-level calls are designed to perform all of the GP
management for your application. However, the GPIB driver can han
bus management only when the GPIB interface board is CIC
(Controller-In-Charge). Only the CIC is able to send command bytes
the devices on the bus to perform device addressing or other bus
management activities.

Use one of the following methods to make your GPIB board the CIC

• If your GPIB board is configured as the System Controller
(default), it automatically makes itself the CIC by asserting the IF
line the first time you make a device-level call.

• If your setup includes more than one Controller, or if your GPIB
interface board is not configured as the System Controller, use
CIC Protocol method. To use the protocol, issue the ibconfig
function (option IbcCICPROT) or use the GPIB Configuration
utility to activate the CIC protocol. If the interface board is not CIC
and you make a device-level call with the CIC Protocol enabled,
following sequence occurs:

1. The GPIB interface board asserts the SRQ line.

2. The current CIC serial polls the board.

3. The interface board returns a response byte of hex 42.

4. The current CIC passes control to the GPIB board.

If the current CIC does not pass control, the GPIB driver returns th
ECIC error code to your application. This error can occur if the curre
CIC does not understand the CIC Protocol. If this happens, you cou
send a device-specific command requesting control for the GPIB bo
Then use a board-level ibwait command to wait for CIC.
© National Instruments Corporation 7-11 GPIB User Manual for Windows 95/Windows NT

Chapter 7 GPIB Programming Techniques

lso

atus
e.

)

clear
rs.

ght
n is

 The
and
and
r

e
h
tatus

rers
Talker/Listener Applications
Although designed for Controller-In-Charge applications, you can a
use the GPIB software in most non-Controller situations. These
situations are known as Talker/Listener applications because the
interface board is not the GPIB Controller.

A Talker/Listener application typically uses ibwait with a mask of
0 to monitor the status of the interface board. Then, based on the st
bits set in ibsta , the application takes whatever action is appropriat
For example, the application could monitor the status bits TACS
(Talker Active State) and LACS (Listener Active State) to determine
when to send data to or receive data from the Controller. The
application could also monitor the DCAS (Device Clear Active State
and DTAS (Device Trigger Active State) bits to determine if the
Controller has sent the device clear (DCL or SDC) or trigger (GET)
messages to the interface board. If the application detects a device
from the Controller, it might reset the internal state of message buffe
If it detects a trigger message from the Controller, the application mi
begin an operation, such as taking a voltage reading if the applicatio
actually acting as a voltmeter.

Serial Polling
You can use serial polling to obtain specific information from GPIB
devices when they request service. When the GPIB SRQ line is
asserted, it signals the Controller that a service request is pending.
Controller must then determine which device asserted the SRQ line
respond accordingly. The most common method for SRQ detection
servicing is the serial poll. This section describes how to set up you
application to detect and respond to service requests from GPIB
devices.

Service Requests from IEEE 488 Devices
IEEE 488 devices request service from the GPIB Controller by
asserting the GPIB SRQ line. When the Controller acknowledges th
SRQ, it serial polls each open device on the bus to determine whic
device requested service. Any device requesting service returns a s
byte with bit 6 set and then unasserts the SRQ line. Devices not
requesting service return a status byte with bit 6 cleared. Manufactu
GPIB User Manual for Windows 95/Windows NT 7-12 © National Instruments Corporation

Chapter 7 GPIB Programming Techniques

 for

yte.
ces

ly
 of

r-on,
rror,
n

ned

 to
he

olls

ed
 of

ion

out

nse
c

byte.
of IEEE 488 devices use lower order bits to communicate the reason
the service request or to summarize the state of the device.

Service Requests from IEEE 488.2 Devices
The IEEE 488.2 standard refined the bit assignments in the status b
In addition to setting bit 6 when requesting service, IEEE 488.2 devi
also use two other bits to specify their status. Bit 4, the Message
Available bit (MAV), is set when the device is ready to send previous
queried data. Bit 5, the Event Status bit (ESB), is set if one or more
the enabled IEEE 488.2 events occurs. These events include powe
user request, command error, execution error, device dependent e
query error, request control, and operation complete. The device ca
assert SRQ when ESB or MAV are set, or when a manufacturer-defi
condition occurs.

Automatic Serial Polling
You can enable automatic serial polling if you want your application
conduct a serial poll automatically when the SRQ line is asserted. T
autopolling procedure occurs as follows:

1. To enable autopolling, use the GPIB Configuration utility or the
configuration function, ibconfig , with option IbcAUTOPOLL.
(Autopolling is enabled by default.)

2. When the SRQ line is asserted, the driver automatically serial p
the open devices.

3. Each positive serial poll response (bit 6 or hex 40 is set) is stor
in a queue associated with the device that sent it. The RQS bit
the device status word, ibsta , is set.

4. The polling continues until SRQ is unasserted or an error condit
is detected.

5. To empty the queue, use the ibrsp function. ibrsp returns the
first queued response. Other responses are read in first-in-first-
(FIFO) fashion. If the RQS bit of the status word is not set when
ibrsp is called, a serial poll is conducted and returns the respo
received. You should empty the queue as soon as an automati
serial poll occurs, because responses might be discarded if the
queue is full.

6. If the RQS bit of the status word is still set after ibrsp is called,
the response byte queue contains at least one more response
If this happens, you should continue to call ibrsp until RQS is
cleared.
© National Instruments Corporation 7-13 GPIB User Manual for Windows 95/Windows NT

Chapter 7 GPIB Programming Techniques

Q,

ave

 in

t of

an
o
oll

e

e,

ed,

l
Stuck SRQ State
If autopolling is enabled and the GPIB interface board detects an SR
the driver serial polls all open devices connected to that board. The
serial poll continues until either SRQ unasserts or all the devices h
been polled.

If no device responds positively to the serial poll, or if SRQ remains
effect because of a faulty instrument or cable, a stuck SRQ state is in
effect. If this happens during an ibwait for RQS, the driver reports the
ESRQ error. If the stuck SRQ state happens, no further polls are
attempted until an ibwait for RQS is made. When ibwait is issued,
the stuck SRQ state is terminated and the driver attempts a new se
serial polls.

Autopolling and Interrupts
If autopolling and interrupts are both enabled, the GPIB software c
perform autopolling after any device-level NI-488 call provided that n
GPIB I/O is currently in progress. In this case, an automatic serial p
can occur even when your application is not making any calls to th
GPIB software. Autopolling can also occur when a device-level
ibwait for RQS is in progress. Autopolling is not allowed when an
application calls a board-level NI-488 function or any NI-488.2 routin
or the stuck SRQ (ESRQ) condition occurs.

Note: The GPIB software for Windows 95 and Windows NT does not function
properly if interrupts are disabled.

SRQ and Serial Polling with NI-488 Device Functions
You can use the device-level NI-488 function ibrsp to conduct a serial
poll. ibrsp conducts a single serial poll and returns the serial poll
response byte to the application. If automatic serial polling is enabl
the application can use ibwait to suspend program execution until
RQS appears in the status word, ibsta . The program can then call
ibrsp to obtain the serial poll response byte.

The following example shows you how to use the ibwait and ibrsp
functions in a typical SRQ servicing situation when automatic seria
polling is enabled:

#include "decl-32.h"

char GetSerialPollResponse (int DeviceHandle)

{

GPIB User Manual for Windows 95/Windows NT 7-14 © National Instruments Corporation

Chapter 7 GPIB Programming Techniques

use
RQ

tus

s
ist.
e

rns

en
e
GPIB

ple
char SerialPollResponse = 0;

ibwait (DeviceHandle, TIMO | RQS);

if (ibsta & RQS) {

printf ("Device asserted SRQ.\n");

/* Use ibrsp to retrieve the serial poll response. */

ibrsp (DeviceHandle, &SerialPollResponse);

}

return SerialPollResponse;

}

SRQ and Serial Polling with NI-488.2 Routines
The GPIB software includes a set of NI-488.2 routines that you can
to conduct SRQ servicing and serial polling. Routines pertinent to S
servicing and serial polling are AllSpoll , ReadStatusByte ,
FindRQS , TestSRQ , and WaitSRQ. Following are descriptions of each
of the routines:

• AllSpoll can serial poll multiple devices with a single call. It
places the status bytes from each polled instrument into a
predefined array. Then, you must check the RQS bit of each sta
byte to determine whether that device requested service.

• ReadStatusByte is similar to AllSpoll , except that it only serial
polls a single device. It is also similar to the device-level NI-488
ibrsp function.

• FindRQS serial polls a list of devices until it finds a device that i
requesting service or until it has polled all of the devices on the l
The routine returns the index and status byte value of the devic
requesting service.

• TestSRQ determines whether the SRQ line is asserted, and retu
to the program immediately.

• WaitSRQ is similar to TestSRQ , except that WaitSRQ suspends the
application until either SRQ is asserted or the timeout period is
exceeded.

The following examples use NI-488.2 routines to detect SRQ and th
determine which device requested service. In these examples, thre
devices are present on the GPIB at addresses 3, 4, and 5, and the
interface is designated as bus index 0. The first example uses FindRQS
to determine which device is requesting service and the second exam
uses AllSpoll to serial poll all three devices. Both examples use
WaitSRQ to wait for the GPIB SRQ line to be asserted.
© National Instruments Corporation 7-15 GPIB User Manual for Windows 95/Windows NT

Chapter 7 GPIB Programming Techniques

se
Note: Automatic serial polling is not used in these examples because you cannot u
it with NI-488.2 routines.

Example 1: Using FindRQS
This example shows you how to use FindRQS to find the first device
that is requesting service:

void GetASerialPollResponse (char *DevicePad,
 char *DeviceResponse)

{
char SerialPollResponse = 0;
int WaitResult;
Addr4882_t Addrlist[4] = {3,4,5,NOADDR};
WaitSRQ (0, &WaitResult);
if (WaitResult) {

printf ("SRQ is asserted.\n");
FindRQS (0, AddrList, &SerialPollResponse);
if (!(ibsta & ERR)) {

printf ("Device at pad %x returned byte
 %x.\n", AddrList[ibcnt],(int)
 SerialPollResponse);

*DevicePad = AddrList[ibcnt];
*DeviceResponse = SerialPollResponse;

}
}
return;

}

Example 2: Using AllSpoll
This example shows you how to use AllSpoll to serial poll three
devices with a single call:

void GetAllSerialPollResponses (Addr4882_t AddrList[],
short ResponseList[])
{

int WaitResult;
WaitSRQ (0, &WaitResult);
if (WaitResult) {

printf ("SRQ is asserted.\n");
AllSpoll (0, AddrList, ResponseList);
if (!(ibsta & ERR)) {

for (i = 0; AddrList[i] != NOADDR; i++) {
printf ("Device at pad %x returned byte

%x.\n", AddrList[i], ResponseList[i]);
}

}
}
return;

}

GPIB User Manual for Windows 95/Windows NT 7-16 © National Instruments Corporation

Chapter 7 GPIB Programming Techniques

r

eir

lel
ust

 the
he

or

The
Parallel Polling
Although parallel polling is not widely used, it is a useful method fo
obtaining the status of more than one device at the same time. The
advantage of parallel polling is that a single parallel poll can easily
check up to eight individual devices at once. In comparison, eight
separate serial polls would be required to check eight devices for th
serial poll response bytes. The value of the individual status bit (ist)
determines the parallel poll response.

Implementing a Parallel Poll
You can implement parallel polling with either NI-488 functions or
NI-488.2 routines. If you use NI-488.2 routines to execute parallel
polls, you do not need extensive knowledge of the parallel polling
messages. However, you should use the NI-488 functions for paral
polling when the GPIB board is not the Controller, and the board m
configure itself for a parallel poll and set its own individual status
bit (ist).

Parallel Polling with NI-488 Functions
Complete the following steps to implement parallel polling using
NI-488 functions. Each step contains example code:

1. Configure the device for parallel polling using the ibppc function,
unless the device can configure itself for parallel polling.

ibppc requires an 8-bit value to designate the data line number,
ist sense, and whether the function configures the device for t
parallel poll. The bit pattern is as follows:

0 1 1 E S D2 D1 D0

E is 1 to disable parallel polling and 0 to enable parallel polling f
that particular device.

S is 1 if the device is to assert the assigned data line when ist is 1,
and 0 if the device is to assert the assigned data line when ist is 0.

D2 through D0 determine the number of the assigned data line.
physical line number is the binary line number plus one. For
example, DIO3 has a binary bit pattern of 010.

The following example code configures a device for parallel
polling using NI-488 functions. The device asserts DIO7 if its ist
is 0.
© National Instruments Corporation 7-17 GPIB User Manual for Windows 95/Windows NT

Chapter 7 GPIB Programming Techniques

t
as

n

u
d

he

o

l
to

t
In this example, the ibdev command opens a device that has a
primary address of 3, has no secondary address, has a timeou
of 3 s, asserts EOI with the last byte of a write operation, and h
EOS characters disabled.

The following call configures the device to respond to the poll o
DIO7 and to assert the line in the case when its ist is 0. Pass the
binary bit pattern, 0110 0110 or hex 66, to ibppc .

#include "decl-32.h"

char ppr;

dev = ibdev(0,3,0,T3s,1,0);

ibppc(dev, 0x66);

If the GPIB interface board configures itself for a parallel poll, yo
should still use the ibppc function. Pass the board index or a boar
unit descriptor value as the first argument in ibppc . Also, if the
individual status bit (ist) of the board needs to be changed, use t
ibist function.

In the following example, the GPIB board is to configure itself t
participate in a parallel poll. It asserts DIO5 when ist is 1 if a
parallel poll is conducted.

ibppc(0, 0x6C);

ibist(0, 1);

2. Conduct the parallel poll using ibrpp and check the response for a
certain value. The following example code performs the paralle
poll and compares the response to hex 10, which corresponds
DIO5. If that bit is set, the ist of the device is 1.

ibrpp(dev, &ppr);

if (ppr & 0x10) printf("ist = 1\n");

3. Unconfigure the device for parallel polling with ibppc . Notice that
any value having the parallel poll disable bit set (bit 4) in the bi
pattern disables the configuration, so you can use any value
between hex 70 and 7E.

ibppc(dev, 0x70);
GPIB User Manual for Windows 95/Windows NT 7-18 © National Instruments Corporation

Chapter 7 GPIB Programming Techniques

g.
rt

e,

f the
Parallel Polling with NI-488.2 Routines
Complete the following steps to implement parallel polling using
NI-488.2 routines. Each step contains example code:

1. Configure the device for parallel polling using the PPollConfig
routine, unless the device can configure itself for parallel pollin
The following example configures a device at address 3 to asse
data line 5 (DIO5) when its ist value is 1.

#include "decl-32.h"

char response;

Addr4882_t AddressList[2];

/* The following command clears the GPIB. */

SendIFC(0);

/* The value of sense is compared with the ist bit

 of the device and determines whether the data

 line is asserted.*/

PPollConfig(0,3,5,1);

2. Conduct the parallel poll using PPoll , store the response, and
check the response for a certain value. In the following exampl
because DIO5 is asserted by the device if ist is 1, the program
checks bit 4 (hex 10) in the response to determine the value of ist :

PPoll(0, &response);

/* If response has bit 4 (hex 10) set, the ist bit

 of the device at that time is equal to 1. If

 it does not appear, the ist bit is equal to 0.

 Check the bit in the following statement. */

if (response & 0x10) {

printf("The ist equals 1.\n");

}

else {

printf("The ist equals 0.\n");

}

3. Unconfigure the device for parallel polling using PPollUnconfig ,
as shown in the following example. In this example, the NOADDR
constant must appear at the end of the array to signal the end o
address list. If NOADDR is the only value in the array, all devices
receive the parallel poll disable message.
AddressList[0] = 3;

AddressList[1] = NOADDR;

PPollUnconfig(0, AddressList);
© National Instruments Corporation 7-19 GPIB User Manual for Windows 95/Windows NT

© National Instruments Corporation 8-1 GPIB User Manual fo
Chapter

8
GPIB Configuration Utility

n
e

he

to

To
n of

ng
e
iate

r
This chapter describes the GPIB Configuration utility, an interactive
utility you can use to configure the GPIB software.

Overview
The Windows 95 GPIB Configuration utility is integrated into the
Windows 95 Device Manager. The Windows NT GPIB Configuratio
utility is integrated into the Windows NT Control Panel. You can us
the GPIB Configuration utility to view or modify the configuration of
your GPIB interface boards. You can also use it to view or modify t
GPIB device templates, which provide compatibility with older
applications. The online help includes all the information you need
properly configure the GPIB software.

In most cases, you should use the GPIB Configuration utility only to
change the hardware configuration of your GPIB interface boards.
change the GPIB characteristics of your boards and the configuratio
the device templates, use the ibconfig function in your application. If
your application uses ibconfig whenever it needs to modify a
configuration option, it is able to run on any computer with the
appropriate GPIB software, regardless of the configuration of that
computer.

Windows 95: Configuring the GPIB Software
You do not need to configure the GPIB software unless you are usi
more than one GPIB interface in your system. If you are using mor
than one interface, you should configure the GPIB software to assoc
a logical name (GPIB0, GPIB1, and so on) with each physical GPIB
interface.

Note: GPIB Analyzer software settings are available through the GPIB Analyze
application.
r Windows 95/Windows NT

Chapter 8 GPIB Configuration Utility

re

ld

es

ws
To configure the GPIB software, complete the following steps:

1. Select Start»Settings»Control Panel and double-click on the
System icon.

2. Select the Device Manager tab in the System Properties dialog
box that appears.

3. Click on the View devices by type button at the top of the Device
Manager tab, and double-click on the National Instruments
GPIB Interfaces icon.

4. Double-click on the particular interface type you want to configu
in the list of installed interfaces immediately below National
Instruments GPIB Interfaces. If an exclamation point or an X
appears next to the interface, there is a problem, and you shou
refer to the Troubleshooting Device Manager Problems section in
Appendix C, Windows 95: Troubleshooting and Common
Questions, to resolve your problem before you continue. The
Resources tab provides information about the hardware resourc
assigned to the GPIB interface, and the GPIB Settings tab provides
information about the software configuration for the GPIB
interface.

5. Use the Interface Name drop-down box to select a logical name
(GPIB0, GPIB1, and so on) for the GPIB interface. Repeat this
process for each interface you need to configure. Figure 8-1 sho
the GPIB Settings tab for an AT-GPIB/TNT (PnP).
GPIB User Manual for Windows 95/Windows NT 8-2 © National Instruments Corporation

Chapter 8 GPIB Configuration Utility
Figure 8-1. GPIB Settings Tab for the AT-GPIB/TNT (PnP)
© National Instruments Corporation 8-3 GPIB User Manual for Windows 95/Windows NT

Chapter 8 GPIB Configuration Utility

e

,

p
l.

ur

If you want to examine or modify the logical device templates for th
GPIB software, select the National Instruments GPIB Interfaces icon
from the Device Manager tab, and click on the Properties button.
Select the Device Templates tab to view the logical device templates
as shown in Figure 8-2.

Figure 8-2. Device Templates Tab for the Logical Device Templates

Windows NT: Configuring the GPIB Software
When you install the GPIB software for Windows NT, the GPIB setu
program installs the GPIB Configuration utility in your Control Pane

Because you can use the GPIB Configuration utility to modify the
configuration of the GPIB kernel drivers, you must be logged onto yo
Windows NT system as the Administrator to make any changes with
the GPIB Configuration utility. If you start the GPIB Configuration
utility without Administrator privileges, it runs in read-only mode;
you can view the settings, but you cannot make changes.
GPIB User Manual for Windows 95/Windows NT 8-4 © National Instruments Corporation

Chapter 8 GPIB Configuration Utility

f

ion

n

wer
t. If
d
s. If
t is

ng

ain
n
To start the GPIB Configuration utility, select Start»Settings»Control
Panel and double-click on the GPIB icon.

The main GPIB Configuration dialog box appears containing a list o
the GPIB boards and device templates, as shown in Figure 8-3.

Figure 8-3. Main GPIB Configuration Utility Dialog Box

If at any point you need help, click on the Help button or press the <F1>
key. This brings up the help screen, which gives you more informat
about the current dialog box.

After you configure your GPIB boards and device templates, click o
the OK button to save the changes and exit. Click on the Cancel button
to exit without saving any of the changes you made.

After you click on the OK button, the GPIB Configuration utility asks
whether you want the changes to take effect immediately. If you ans
No, you must restart your system before the new settings take effec
you answer Yes, the GPIB Configuration utility attempts to unload an
reload the GPIB software so that the software uses your new setting
the GPIB Configuration utility cannot unload the software because i
being used by another application, it instructs you to restart your
computer.

If you need to unload the GPIB software and prevent it from reloadi
when you restart your computer, click on the Unload button. If the
GPIB Configuration utility cannot unload the GPIB software, it
instructs you either to exit all GPIB-related applications, or to shut
down your system and restart it. If you want to use the software ag
after unloading it, run the GPIB Configuration utility again and click o
the OK button.
© National Instruments Corporation 8-5 GPIB User Manual for Windows 95/Windows NT

© National Instruments Corporation A-1 GPIB User Manual
Appendix

A
Status Word Conditions
,

or
This appendix describes the conditions reported in the status word
ibsta .

For information about how to use ibsta in your application program,
refer to Chapter 3, Developing Your Application.

Each bit in ibsta can be set for device calls (dev), board calls (brd),
both (dev, brd).

The following table shows the status word layout.

Mnemonic Bit Pos. Hex Value Type Description

ERR 15 8000 dev, brd GPIB error

TIMO 14 4000 dev, brd Time limit exceeded

END 13 2000 dev, brd END or EOS detected

SRQI 12 1000 brd SRQ interrupt received

RQS 11 800 dev Device requesting service

CMPL 8 100 dev, brd I/O completed

LOK 7 80 brd Lockout State

REM 6 40 brd Remote State

CIC 5 20 brd Controller-In-Charge

ATN 4 10 brd Attention is asserted

TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State

DCAS 0 1 brd Device Clear State
for Windows 95/Windows NT

Appendix A Status Word Conditions

or.
ble

in

 set

lso

s.

hat

on
, or

The
if it
ERR (dev, brd)
ERR is set in the status word following any call that results in an err
You can determine the particular error by examining the error varia
iberr . For more information about error codes that are recorded in
iberr along with possible solutions, refer to Appendix B, Error Codes
and Solutions. ERR is cleared following any call that does not result
an error.

TIMO (dev, brd)
TIMO indicates that the timeout period has been exceeded. TIMO is
in the status word following an ibwait or ibnotify call if the TIMO
bit of the mask parameter is set and the time limit expires. TIMO is a
set following any synchronous I/O functions (for example, ibcmd ,
ibrd , ibwrt , Receive , Send, and SendCmds) if a timeout occurs
during one of these calls. TIMO is cleared in all other circumstance

END (dev, brd)
END indicates either that the GPIB EOI line has been asserted or t
the EOS byte has been received, if the software is configured to
terminate a read on an EOS byte. If the GPIB board is performing a
shadow handshake as a result of the ibgts function, any other function
can return a status word with the END bit set if the END condition
occurs before or during that call. END is cleared when any I/O
operation is initiated.

Some applications might need to know the exact I/O read terminati
mode of a read operation—EOI by itself, the EOS character by itself
EOI plus the EOS character. You can use the ibconfig function
(option IbcEndBitIsNormal) to enable a mode in which the END bit
is set only when EOI is asserted. In this mode, if the I/O operation
completes because of the EOS character by itself, END is not set.
application should check the last byte of the received buffer to see
is the EOS character.
GPIB User Manual for Windows 95/Windows NT A-2 © National Instruments Corporation

Appendix A Status Word Conditions

et
e
en

s

e or
he
d.

or

 by

QS
en

et,

out
her
e
SRQI (brd)
SRQI indicates that a GPIB device is requesting service. SRQI is s
when the GPIB board is CIC, the GPIB SRQ line is asserted, and th
automatic serial poll capability is disabled. SRQI is cleared either wh
the GPIB board ceases to be the CIC or when the GPIB SRQ line i
unasserted.

RQS (dev)
RQS appears in the status word only after a device-level call and
indicates that the device is requesting service. RQS is set when on
more positive serial poll response bytes have been received from t
device. A positive serial poll response byte always has bit 6 asserte
Automatic serial polling must be enabled (it is enabled by default) f
RQS to automatically appear in ibsta . You can also wait for a device
to request service regardless of the state of automatic serial polling
calling ibwait with a mask that contains RQS. Do not issue an ibwait
call on RQS for a device that does not respond to serial polls. Use
ibrsp to acquire the serial poll response byte that was received. R
is cleared when all of the stored serial poll response bytes have be
reported to you through the ibrsp function.

CMPL (dev, brd)
CMPL indicates the condition of I/O operations. It is set when an I/O
operation is complete. CMPL is cleared while the I/O operation is in
progress.

LOK (brd)
LOK indicates whether the board is in a lockout state. While LOK is s
the EnableLocal routine or ibloc function is inoperative for that
board. LOK is set when the GPIB board detects that the Local Lock
(LLO) message has been sent either by the GPIB board or by anot
Controller. LOK is cleared when the System Controller unasserts th
Remote Enable (REN) GPIB line.
© National Instruments Corporation A-3 GPIB User Manual for Windows 95/Windows NT

Appendix A Status Word Conditions

t
B
IB

l

IC

ler
PIB
en

t
N

oard
rd
REM (brd)
REM indicates whether the board is in the remote state. REM is se
when the Remote Enable (REN) GPIB line is asserted and the GPI
board detects that its listen address has been sent either by the GP
board or by another Controller. REM is cleared in the following
situations:

• When REN becomes unasserted

• When the GPIB board as a Listener detects that the Go to Loca
(GTL) command has been sent either by the GPIB board or by
another Controller

• When the ibloc function is called while the LOK bit is cleared in
the status word

CIC (brd)
CIC indicates whether the GPIB board is the Controller-In-Charge. C
is set when the SendIFC routine or ibsic function is executed either
while the GPIB board is System Controller or when another Control
passes control to the GPIB board. CIC is cleared either when the G
board detects Interface Clear (IFC) from the System Controller or wh
the GPIB board passes control to another device.

ATN (brd)
ATN indicates the state of the GPIB Attention (ATN) line. ATN is se
when the GPIB ATN line is asserted, and it is cleared when the AT
line is unasserted.

TACS (brd)
TACS indicates whether the GPIB board is addressed as a Talker.
TACS is set when the GPIB board detects that its talk address (and
secondary address, if enabled) has been sent either by the GPIB b
itself or by another Controller. TACS is cleared when the GPIB boa
detects the Untalk (UNT) command, its own listen address, a talk
address other than its own talk address, or Interface Clear (IFC).
GPIB User Manual for Windows 95/Windows NT A-4 © National Instruments Corporation

Appendix A Status Word Conditions

r.
nd
oard
rd

ger
 that
her

ar
ce
 the
DC)

LACS (brd)
LACS indicates whether the GPIB board is addressed as a Listene
LACS is set when the GPIB board detects that its listen address (a
secondary address, if enabled) has been sent either by the GPIB b
itself or by another Controller. LACS is also set when the GPIB boa
shadow handshakes as a result of the ibgts function. LACS is cleared
when the GPIB board detects the Unlisten (UNL) command, its own
talk address, Interface Clear (IFC), or that the ibgts function has been
called without shadow handshake.

DTAS (brd)
DTAS indicates whether the GPIB board has detected a device trig
command. DTAS is set when the GPIB board, as a Listener, detects
the Group Execute Trigger (GET) command has been sent by anot
Controller. DTAS is cleared on any call immediately following an
ibwait call, if the DTAS bit is set in the ibwait mask parameter.

DCAS (brd)
DCAS indicates whether the GPIB board has detected a device cle
command. DCAS is set when the GPIB board detects that the Devi
Clear (DCL) command has been sent by another Controller, or when
GPIB board as a Listener detects that the Selected Device Clear (S
command has been sent by another Controller.

If you use the ibwait or ibnotify function to wait for DCAS and the
wait is completed, DCAS is cleared from ibsta after the next GPIB
call. The same is true of reads and writes. If you call a read or write
function such as ibwrt or Send, and DCAS is set in ibsta , the I/O
operation is aborted. DCAS is cleared from ibsta after the next GPIB
call.
© National Instruments Corporation A-5 GPIB User Manual for Windows 95/Windows NT

© National Instruments Corporation B-1 GPIB User Manual
Appendix

B
Error Codes and Solutions
it
This appendix describes each error, some conditions under which
might occur, and possible solutions.

The following table lists the GPIB error codes.

Error
Mnemonic

iberr
Value Meaning

EDVR 0 System error

ECIC 1 Function requires GPIB board to be CIC

ENOL 2 No Listeners on the GPIB

EADR 3 GPIB board not addressed correctly

EARG 4 Invalid argument to function call

ESAC 5 GPIB board not System Controller as
required

EABO 6 I/O operation aborted (timeout)

ENEB 7 Nonexistent GPIB board

EDMA 8 DMA error

EOIP 10 Asynchronous I/O in progress

ECAP 11 No capability for operation

EFSO 12 File system error

EBUS 14 GPIB bus error

ESTB 15 Serial poll status byte queue overflow

ESRQ 16 SRQ stuck in ON position

ETAB 20 Table problem
for Windows 95/Windows NT

Appendix B Error Codes and Solutions

rly.

e.

B

u

le

es

es
EDVR (0)
EDVR is returned when the board or device name passed to ibfind , or
the board index passed to ibdev , cannot be accessed. The global
variable ibcntl contains an error code. This error occurs when you try
to access a board or device that is not installed or configured prope

EDVR is also returned if an invalid unit descriptor is passed to any
NI-488 function call.

Solutions
Possible solutions for this error are as follows:

• Use ibdev to open a device without specifying its symbolic nam

• Use only device or board names that are configured in the GPI
Configuration utility as parameters to the ibfind function.

• Use the GPIB Configuration utility to ensure that each board yo
want to access is configured properly.

• Use the unit descriptor returned from ibdev or ibfind as the first
parameter in subsequent NI-488 functions. Examine the variab
before the failing function to make sure its value has not been
corrupted.

• For Windows 95, refer to the Troubleshooting EDVR Error
Conditions section in Appendix C, Windows 95: Troubleshooting
and Common Questions, for more information.

ECIC (1)
ECIC is returned when one of the following board functions or routin
is called while the board is not CIC:

• Any device-level NI-488 functions that affect the GPIB

• Any board-level NI-488 functions that issue GPIB command byt
(ibcmd , ibcmda , ibln , and ibrpp)

• ibcac and ibgts

• Any of the NI-488.2 routines that issue GPIB command bytes
(SendCmds, PPoll , Send, and Receive)
GPIB User Manual for Windows 95/Windows NT B-2 © National Instruments Corporation

Appendix B Error Codes and Solutions

 in
t

PIB
he
ble
.

nd
ed.

PIB

s of
Solutions
Possible solutions for this error are as follows:

• Use ibsic or SendIFC to make the GPIB board become CIC on
the GPIB.

• Use ibrsc 1 to make sure your GPIB board is configured as
System Controller.

• In multiple CIC situations, always make sure the CIC bit appears
the status word ibsta before attempting these calls. If it does no
appear, you can perform an ibwait (for CIC) call to delay further
processing until control is passed to the board.

ENOL (2)
ENOL usually occurs when a write operation is attempted with no
Listeners addressed. For a device write, ENOL indicates that the G
address configured for that device in the software does not match t
GPIB address of any device connected to the bus, that the GPIB ca
is not connected to the device, or that the device is not powered on

ENOL can occur in situations where the GPIB board is not the CIC a
the Controller asserts ATN before the write call in progress has end

Solutions
Possible solutions for this error are as follows:

• Make sure that the GPIB address of your device matches the G
address of the device to which you want to write data.

• Use the appropriate hex code in ibcmd to address your device.

• Check your cable connections and make sure at least two-third
your devices are powered on.

• Call ibpad (or ibsad , if necessary) to match the configured
address to the device switch settings.

• Reduce the write byte count to that which is expected by the
Controller.
© National Instruments Corporation B-3 GPIB User Manual for Windows 95/Windows NT

Appendix B Error Codes and Solutions

lly

sible

ling

l.

 a

r

.

EADR (3)
EADR occurs when the GPIB board is CIC and is not properly
addressing itself before read and write functions. This error is usua
associated with board-level functions.

EADR is also returned by the function ibgts when the
shadow-handshake feature is requested and the GPIB ATN line is
already unasserted. In this case, the shadow handshake is not pos
and the error is returned to notify you of that fact.

Solutions
Possible solutions for this error are as follows:

• Make sure that the GPIB board is addressed correctly before cal
ibrd , ibwrt , RcvRespMsg, or SendDataBytes .

• Avoid calling ibgts except immediately after an ibcmd call.
(ibcmd causes ATN to be asserted.)

EARG (4)
EARG results when an invalid argument is passed to a function cal
The following are some examples:

• ibtmo called with a value not in the range 0 through 17

• ibeos called with meaningless bits set in the high byte of the
second parameter

• ibpad or ibsad called with invalid addresses

• ibppc called with invalid parallel poll configurations

• A board-level NI-488 call made with a valid device descriptor, or
device-level NI-488 call made with a board descriptor

• An NI-488.2 routine called with an invalid address

• PPollConfig called with an invalid data line or sense bit

Solutions
Possible solutions for this error are as follows:

• Make sure that the parameters passed to the NI-488 function o
NI-488.2 routine are valid.

• Do not use a device descriptor in a board function or vice-versa
GPIB User Manual for Windows 95/Windows NT B-4 © National Instruments Corporation

Appendix B Error Codes and Solutions

y

e to

on.
 to
the
.

se

fore

ied

ESAC (5)
ESAC results when ibsic , ibsre , SendIFC , or EnableRemote is
called when the GPIB board does not have System Controller
capability.

Solutions
Give the GPIB board System Controller capability by calling ibrsc 1
or by using the GPIB Configuration utility to configure that capabilit
into the software.

EABO (6)
EABO indicates that an I/O operation has been canceled, usually du
a timeout condition. Other causes are calling ibstop or receiving the
Device Clear message from the CIC while performing an I/O operati
Frequently, the I/O is not progressing (the Listener is not continuing
handshake or the Talker has stopped talking), or the byte count in
call which timed out was more than the other device was expecting

Solutions
Possible solutions for this error are as follows:

• Use the correct byte count in input functions or have the Talker u
the END message to signify the end of the transfer.

• Lengthen the timeout period for the I/O operation using ibtmo .

• Make sure that you have configured your device to send data be
you request data.

ENEB (7)
ENEB occurs when no GPIB board exists at the I/O address specif
in the configuration program. This occurs when the board is not
physically plugged into the system, the I/O address specified during
configuration does not match the actual board setting, or there is a
system conflict with the base I/O address.
© National Instruments Corporation B-5 GPIB User Manual for Windows 95/Windows NT

Appendix B Error Codes and Solutions

e
 a

nly

d.

her

Solutions
Make sure there is a GPIB board in your system that is properly
configured both in hardware and software using a valid base I/O
address.

EDMA (8)
EDMA occurs if a system DMA error is encountered when the GPIB
software attempts to transfer data over the GPIB using DMA.

Solutions
Possible solutions for this error are as follows:

• You can correct the EDMA problem in the hardware by using th
GPIB Configuration utility to reconfigure the hardware to not use
DMA resource.

• You can correct the EDMA problem in the software by using
ibdma to disable DMA.

EOIP (10)
EOIP occurs when an asynchronous I/O operation has not finished
before some other call is made. During asynchronous I/O, you can o
use ibstop , ibnotify , ibwait , and ibonl , or perform other
non-GPIB operations. If any other call is attempted, EOIP is returne

Solutions
Resynchronize the driver and the application before making any furt
GPIB calls. Resynchronization is accomplished by using one of the
following four functions:

ibnotify If the ibsta value passed to the ibnotify callback
contains CMPL, the driver and application are
resynchronized.

ibwait If the returned ibsta contains CMPL, the driver and
application are resynchronized.

ibstop The I/O is canceled; the driver and application are
resynchronized.
GPIB User Manual for Windows 95/Windows NT B-6 © National Instruments Corporation

Appendix B Error Codes and Solutions

er

 or
 call

the

g
n is

ccept
ibonl The I/O is canceled and the interface is reset; the driv
and application are resynchronized.

ECAP (11)
ECAP results when your GPIB board cannot carry out an operation
when a particular capability has been disabled in the software and a
is made that requires the capability.

Solutions
Possible solutions for this error are as follows:

• Check the validity of the call.

• Make sure your GPIB interface board and the driver both have
needed capability.

EFSO (12)
EFSO results when an ibrdf or ibwrtf call encounters a problem
performing a file operation. Specifically, this error indicates that the
function is unable to open, create, seek, write, or close the file bein
accessed. The specific operating system error code for this conditio
contained in ibcntl .

Solutions
Possible solutions for this error are as follows:

• Make sure the filename, path, and drive that you specified are
correct.

• Make sure that the access mode of the file is correct.

• Make sure there is enough room on the disk to hold the file.

EBUS (14)
EBUS results when certain GPIB bus errors occur during device
functions. All device functions send command bytes to perform
addressing and other bus management. Devices are expected to a
these command bytes within the time limit specified by the default
configuration or the ibtmo function. EBUS results if a timeout
occurred while sending these command bytes.
© National Instruments Corporation B-7 GPIB User Manual for Windows 95/Windows NT

Appendix B Error Codes and Solutions

d

lder
 the

use

r

Q

t
Solutions
Possible solutions for this error are as follows:

• Verify that the instrument is operating correctly.

• Check for loose or faulty cabling or several powered-off
instruments on the GPIB.

• If the timeout period is too short for the driver to send comman
bytes, increase the timeout period.

ESTB (15)
ESTB is reported only by the ibrsp function. ESTB indicates that one
or more serial poll status bytes received from automatic serial polls
have been discarded because of a lack of storage space. Several o
status bytes are available; however, the oldest is being returned by
ibrsp call.

Solutions
Possible solutions for this error are as follows:

• Call ibrsp more frequently to empty the queue.

• Disable autopolling with the ibconfig function (option
IbcAUTOPOLL) or the GPIB Configuration utility.

ESRQ (16)
ESRQ can only be returned by a device-level ibwait call with RQS set
in the mask. ESRQ indicates that a wait for RQS is not possible beca
the GPIB SRQ line is stuck on. This situation can be caused by the
following events:

• Usually, a device unknown to the software is asserting SRQ.
Because the software does not know of this device, it can neve
serial poll the device and unassert SRQ.

• A GPIB bus tester or similar equipment might be forcing the SR
line to be asserted.

• A cable problem might exist involving the SRQ line.

Although the occurrence of ESRQ warns you of a definite GPIB
problem, it does not affect GPIB operations, except that you canno
depend on the ibsta RQS bit while the condition lasts.
GPIB User Manual for Windows 95/Windows NT B-8 © National Instruments Corporation

Appendix B Error Codes and Solutions

ting

ese

t
und.

Solutions
Check to see if other devices not used by your application are asser
SRQ. Disconnect them from the GPIB if necessary.

ETAB (20)
ETAB occurs only during the FindLstn and FindRQS functions.
ETAB indicates that there was some problem with a table used by th
functions, as follows:

• In the case of FindLstn , ETAB means that the given table did no
have enough room to hold all the addresses of the Listeners fo

• In the case of FindRQS , ETAB means that none of the devices in
the given table were requesting service.

Solutions
Possible solutions for this error are as follows:

• In the case of FindLstn , increase the size of result arrays.

• In the case of FindRQS , check to see if other devices not used by
your application are asserting SRQ. Disconnect them from the
GPIB if necessary.
© National Instruments Corporation B-9 GPIB User Manual for Windows 95/Windows NT

© National Instruments Corporation C-1 GPIB User Manual
Appendix

C

Windows 95:
Troubleshooting and
Common Questions
s

.

ed
to a

by
r
r

This appendix describes how to troubleshoot problems and answer
some common questions for Windows 95 users.

Troubleshooting EDVR Error Conditions
In some cases, calls to NI-488 functions or NI-488.2 routines may
return with the ERR bit set in ibsta and the value EDVR in iberr . The
value stored in ibcntl is useful in troubleshooting the error condition

EDVR Error Condition with ibcntl Set to 0xE028002C (-534249428)
If a call is made with a board number that is within the range of allow
board numbers (typically 0 to 3), but which has not been assigned
GPIB interface, an EDVR error condition occurs with ibcntl set to
0xE028002C. You can assign a board number to a GPIB interface
configuring the GPIB software and selecting an interface name. Fo
information about how to configure the GPIB software, refer to you
getting started manual.

EDVR Error Condition with ibcntl Set to 0xE0140025 (-535560155)
If a call is made with a board number that is not within the range of
allowed board numbers (typically 0 to 3), an EDVR error condition
occurs with ibcntl set to 0xE0140025.

EDVR Error Condition with ibcntl Set to 0xE0140035 (-535560139)
If a call is made with a device name that is not listed in the logical
device templates that are part of the GPIB Configuration utility, an
EDVR error condition occurs with ibcntl set to 0xE0140035.
for Windows 95/Windows NT

Appendix C Windows 95: Troubleshooting and Common Questions

rror
r
ng
 if

the

ns

ted

95

ith
g

EDVR Error Condition with ibcntl Set to 0xE0320029 (-533594071) or
0xE1050029 (-519765975)

If a call is made with a board number that is assigned to a GPIB
interface that is unusable because of a resource conflict, an EDVR e
condition occurs with ibcntl set to 0xE0320029 or 0xE1050029. Fo
more information about this error condition, refer to the troubleshooti
appendix in your getting started manual. This error is also returned
you remove a PCMCIA-GPIB or PCMCIA-GPIB+ while the driver is
accessing it or if you try to access a PCMCIA-GPIB when 32-bit
PCMCIA drivers are not enabled. For more information about
enabling 32-bit PCMCIA drivers, refer to the hardware installation
section in your getting started manual.

EDVR Error Condition with ibcntl Set to 0xE0140004 (-535560188)
This error may occur if the GPIB interface has not been correctly
installed and detected by Windows 95. For details on how to install
GPIB hardware, refer to the hardware installation chapter in your
getting started manual. If you have already followed those instructio
and still receive this error, Windows 95 might have configured the
GPIB interface as an Other Device. For more information about how to
solve this problem, refer to your getting started manual.

EDVR Error Condition with ibcntl set to 0xE1030043 (-519897021)
This error occurs if you have enabled DOS GPIB support and attemp
to run an existing GPIB DOS application that was compiled with an
older, unsupported DOS language interface.

Troubleshooting Device Manager Problems
If you are having trouble with your GPIB interface, use the Windows
Device Manager to troubleshoot your problems. To start the
Windows 95 Device Manager, double-click on theSystem icon under
Start»Settings»Control Panel. In the System Properties box that
appears, select the Device Manager tab and click on the View devices
by type button at the top of the tab.

Check to see if the interface listing in the Device Manager appears w
an exclamation point or X by it. If it does, click on the interface listin
and then click on the Properties button to view the General tab for the
interface. In the Device Status section, look for the status description
GPIB User Manual for Windows 95/Windows NT C-2 © National Instruments Corporation

Appendix C Windows 95: Troubleshooting and Common Questions

to

ht
d

e
r

ger

on

any

s are

m.

and status code number. Locate the error code in the following list
find out why your GPIB interface is not working properly:

• Code 8: The GPIB software was incompletely installed. You mig
encounter this problem if you installed an AT-GPIB/TNT+ but di
not install the GPIB Analyzer software. To solve this problem,
reinstall the GPIB software for Windows 95.

• Code 9: Windows 95 had a problem reading information from th
GPIB interface. This problem can occur if you are using an olde
revision of the AT-GPIB/TNT+ or AT-GPIB/TNT (PnP) interface.
Contact National Instruments to upgrade your GPIB interface.

• Code 22: The GPIB interface is disabled. To enable the GPIB
interface, check the appropriate configuration checkbox in the
Device Usage section of the General tab.

• Code 24: The GPIB interface is not present, or the Device Mana
is unaware that the GPIB interface is present. To solve this
problem, select the interface in the Device Manager, and click
the Remove button. Next, click on the Refresh button. At this
point, the system rescans the installed hardware, and the GPIB
interface should show up without any problems. If the problem
persists, contact National Instruments.

• Code 27: Windows 95 was unable to assign the GPIB interface
resources. To solve this problem, free up system resources by
disabling other unnecessary hardware so that enough resource
available for the GPIB interface.

Common Questions
What do I do if my GPIB hardware is listed in the Windows 95
Device Manager with a circled X or an exclamation point (!)
overlaid on it?

Refer to the Troubleshooting Device Manager Problems section of this
appendix for specific information about what might cause this proble
If you have already completed the troubleshooting steps, fill out the
forms in Appendix E, Customer Communication, and contact National
Instruments.
© National Instruments Corporation C-3 GPIB User Manual for Windows 95/Windows NT

Appendix C Windows 95: Troubleshooting and Common Questions

 list

om

ted

te

l
The
le
ion.
How can I determine which type of GPIB hardware I have
installed?

Run the GPIB Configuration utility: select Start»Settings»Control
Panel and double-click on the System icon. Select the Device Manager
tab in the System Properties dialog box. Click on the View devices by
type radio button at the top of the page. If any GPIB hardware is
correctly installed, a National Instruments GPIB Interfaces icon
appears in the list of device types. Double-click on this icon to see a
of installed GPIB hardware.

How can I determine which version of the GPIB software I have
installed?

Run the Diagnostic utility: select the Diagnostic item under
Start»Programs»GPIB Software. The Diagnostic utility displays the
version of the GPIB software that is installed in a banner at the bott
of the window that appears.

What do I do if the Diagnostic utility fails with an error?

Use the Diagnostic utility online help, or refer to the troubleshooting
appendix of your getting started manual. If you have already comple
the troubleshooting steps, fill out the forms in Appendix E, Customer
Communication, and contact National Instruments.

How many GPIB interfaces can I configure for use with my GPIB
software for Windows 95?

You can configure the GPIB software for Windows 95 to communica
with up to 100 GPIB interfaces.

How many devices can I configure for use with my GPIB software
for Windows 95?

The GPIB software for Windows 95 provides a total of 1,024 logica
devices for applications to use. The default number of devices is 32.
maximum number of physical devices you should connect to a sing
GPIB interface is 14, or fewer, depending on your system configurat
GPIB User Manual for Windows 95/Windows NT C-4 © National Instruments Corporation

Appendix C Windows 95: Troubleshooting and Common Questions

ur

dent

 it.
Are interrupts and DMA required for the GPIB software for
Windows 95?

Neither interrupts nor DMA are required, unless you are using a
PCMCIA-GPIB or GPIB hardware with Analyzer capability, in which
case at least one interrupt level is required.

How can I determine if my GPIB hardware and software are
installed properly?

Run the Diagnostic utility: select the Diagnostic item under
Start»Programs»GPIB Software. Refer to the troubleshooting
appendix in your getting started manual or the online help to
troubleshoot any problems.

When should I use the Win32 Interactive Control utility?

You can use the Win32 Interactive Control utility to test and verify
instrument communication, troubleshoot problems, and develop yo
application. For more information, refer to Chapter 6, Win32
Interactive Control Utility.

How do I use an NI-488.2M language interface?

For information about using NI-488.2M language interfaces, refer to
Chapter 3, Developing Your Application.

How do I communicate with my instrument over the GPIB?

Refer to the documentation that came from the instrument
manufacturer. The command sequences you use are totally depen
on the specific instrument. The documentation for each instrument
should include the GPIB commands you need to communicate with
In most cases, NI-488 device-level calls are sufficient for
communicating with instruments. For more information, refer to
Chapter 3, Developing Your Application.

Can I use the NI-488 and NI-488.2 calls together in the same
application?

Yes, you can mix NI-488 functions and NI-488.2 routines.
© National Instruments Corporation C-5 GPIB User Manual for Windows 95/Windows NT

Appendix C Windows 95: Troubleshooting and Common Questions

r 3,

am

.

the
 in
What can I do to check for errors in my GPIB application?

Examine the value of ibsta after each NI-488 or NI-488.2 call. If a call
fails, the ERR bit of ibsta is set and an error code is stored in iberr .
For more information about global status variables, refer to Chapte
Developing Your Application.

Why does the uninstall program leave some components installed?

The uninstall program removes only items that the GPIB setup progr
installed. If you add anything to a directory that was created by the
GPIB setup program, the uninstall program does not delete that
directory, because the directory is not empty after the uninstallation
You need to remove any remaining components yourself.

What information should I have before I call National Instruments?

When you call National Instruments, you should have the results of
Diagnostic utility test. Also, make sure you have filled out the forms
Appendix E, Customer Communication.
GPIB User Manual for Windows 95/Windows NT C-6 © National Instruments Corporation

© National Instruments Corporation D-1 GPIB User Manual
Appendix

D

Windows NT:
Troubleshooting and
Common Questions
s

iver

 the

at

This appendix describes how to troubleshoot problems and answer
some common questions for Windows NT users.

Using Windows NT Diagnostic Tools
There are many reasons why the GPIB driver might not load. If the
software is not properly installed or if there is a conflict between the
GPIB hardware and the other hardware in the system, the GPIB dr
fails to start. Two Windows NT utilities are useful in determining the
source of the problem: the Devices applet in the Control Panel, and
Event Viewer. The following sections describe information available
through each utility.

Examining NT Devices to Verify the GPIB Installation
To verify whether the GPIB devices are installed correctly (that is, th
the devices are started), select Start»Settings»Control Panel and
double-click on the Devices icon.

This utility lists all of the devices detected by Windows NT. Each
device has a status associated with it. If the GPIB driver is installed
correctly, the following lines appear in the list of NT devices:

Device Status Started

GPIB Board Class Driver Started Automatic

GPIB Device Class Driver Started Automatic

You should also see one or more lines similar to the following:

Device Status Started

GPIB Port Driver (AT-GPIB) **** System

GPIB Port Driver (PCI-GPIB) **** System

The GPIB Board Class Driver and the GPIB Device Class Driver should
have a status of Started . If not, refer to the next section, Examining
the NT System Log Using the Event Viewer.
for Windows 95/Windows NT

Appendix D Windows NT: Troubleshooting and Common Questions

ort
y.
d

rt.
ct

at

l

hat

At least one of the GPIB Port Drivers listed by the Devices applet
should have a status of Started . If not, refer to the next section,
Examining the NT System Log Using the Event Viewer.

If the GPIB Class Driver lines are not present or at least one GPIB P
Driver line is not present, the GPIB software is not installed properl
You should reinstall the GPIB software. Refer to your getting starte
manual for installation instructions.

Examining the NT System Log Using the Event Viewer
Windows NT maintains a system log. If the GPIB driver is unable to
start, it records entries in the system log explaining why it failed to sta
To examine the system log by running the Event Viewer utility, sele
Start»Programs»Administrative Tools»Event Viewer.

Events that might appear in the system log include the following:

• The system cannot locate the device file for one or more of the
devices that make up the GPIB driver and an event is logged th
The system cannot find the file specified . In this case,
the GPIB software is not installed properly. You should reinstal
the GPIB software. Refer to your getting started manual for
installation instructions.

• A conflict exists between the GPIB hardware and the other
hardware in the system. If this is the case, an event is logged t
indicates the nature of the resource conflict. To correct this
conflict, reconfigure the GPIB hardware and software. Refer to
your getting started manual for configuration information.

Common Questions
How can I determine which type of GPIB hardware I have
installed?

Run the GPIB Configuration utility: select Start»Programs»Control
Panel and double-click on the GPIB icon.

How can I determine which version of the GPIB software I have
installed?

Run the Diagnostic utility: select the Diagnostic item under
Start»Programs»GPIB Software. The Diagnostic utility displays the
GPIB User Manual for Windows 95/Windows NT D-2 © National Instruments Corporation

Appendix D Windows NT: Troubleshooting and Common Questions

om

te

.

ur

version of the GPIB software that is installed in a banner at the bott
of the window that appears.

How many GPIB interfaces can I configure for use with my GPIB
software for Windows NT?

You can configure the GPIB software for Windows NT to communica
with up to four GPIB interfaces.

How many devices can I configure for use with my GPIB software
for Windows NT?

The GPIB software for Windows NT provides a total of 100 logical
devices for applications to use. The default number of devices is 32

Are interrupts and DMA required with the GPIB Software for
Windows NT?

Interrupts are required, but DMA is not.

How can I determine if my GPIB hardware and software are
installed properly?

Run the Diagnostic utility: select the Diagnostic item under
Start»Programs»GPIB Software. Refer to the troubleshooting
appendix in your getting started manual or the online help to
troubleshoot any problems.

When should I use the Win32 Interactive Control utility?

You can use the Win32 Interactive Control utility to test and verify
instrument communication, troubleshoot problems, and develop yo
application. For more information, refer to Chapter 6, Win32
Interactive Control Utility.

How do I use an NI-488.2M language interface?

For information about using NI-488.2M language interfaces, refer to
Chapter 3, Developing Your Application.
© National Instruments Corporation D-3 GPIB User Manual for Windows 95/Windows NT

Appendix D Windows NT: Troubleshooting and Common Questions

ted

dent

 it.

the
 in
What do I do if the Diagnostic utility fails with an error?

Use the Diagnostic utility online help, or refer to the troubleshooting
appendix of your getting started manual. If you have already comple
the troubleshooting steps, fill out the forms in Appendix E, Customer
Communication, and contact National Instruments.

How do I communicate with my instrument over the GPIB?

Refer to the documentation that came from the instrument
manufacturer. The command sequences you use are totally depen
on the specific instrument. The documentation for each instrument
should include the GPIB commands you need to communicate with
In most cases, NI-488 device-level calls are sufficient for
communicating with instruments. For more information, refer to
Chapter 3, Developing Your Application.

Can I use the NI-488 and NI-488.2 calls together in the same
application?

Yes, you can mix NI-488 functions and NI-488.2 routines.

What can I do to check for errors in my GPIB application?

Examine the value of ibsta after each NI-488 or NI-488.2 call. If a
call fails, the ERR bit of ibsta is set and an error code is stored in
iberr . For more information about global status variables, refer to
Chapter 3, Developing Your Application.

What information should I have before I call National Instruments?

When you call National Instruments, you should have the results of
Diagnostic utility test. Also, make sure you have filled out the forms
Appendix E, Customer Communication.
GPIB User Manual for Windows 95/Windows NT D-4 © National Instruments Corporation

© National Instruments Corporation E-1 GPIB User Manual
Appendix

E
Customer Communication
ry

 and
 your

 quickly
P site,
try the
r
 staffed

 files
ownload
 to use

u can

For your convenience, this appendix contains forms to help you gather the information necessa
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form
the configuration form, if your manual contains one, about your system configuration to answer
questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to
provide the information you need. Our electronic services include a bulletin board service, an FT
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first
electronic support systems. If the information available on these systems does not answer you
questions, we offer fax and telephone support through our technical support centers, which are
by applications engineers.

Electronic Services

Bulletin Board Support
National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
and documents to answer most common customer questions. From these sites, you can also d
the latest instrument drivers, updates, and example programs. For recorded instructions on how
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. Yo
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support
To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use
your Internet address, such as joesmith@anywhere.com , as your password. The support files and
documents are located in the /support directories.
for Windows 95/Windows NT

 wide
t

l at the
 we can

al
act
Fax-on-Demand Support
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a
range of technical information. You can access Fax-on-Demand from a touch-tone telephone a
512 418 1111.

E-Mail Support (Currently USA Only)
You can submit technical support questions to the applications engineering team through e-mai
Internet address listed below. Remember to include your name, address, and phone number so
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technic
support number for your country. If there is no National Instruments office in your country, cont
the source from which you purchased your software to obtain support.

Country Telephone Fax
Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 725 725 11 09 725 725 55
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
United Kingdom 01635 523545 01635 523154
United States 512 795 8248 512 794 5678

nd use
orm

,

__

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, a
the completed copy of this form as a reference for your current configuration. Completing this f
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Company ___

Address __

Fax (___) ________________Phone (___) ______________________________________

Computer brand____________ Model ___________________Processor _________________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter ________________________

Mouse ___yes ___no Other adapters installed___________________________________

Hard disk capacity _____MB Brand__

Instruments used ___

National Instruments hardware product model _____________ Revision ____________________

Configuration ___

National Instruments software product ___________________ Version _____________________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem: _______________________________________

ducts.

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our pro
This information helps us provide quality products to meet your needs.

Title: GPIB User Manual for Windows 95 and Windows NT

Edition Date: January 1998

Part Number: 321819A-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

E-Mail Address __

Phone (___) __________________________ Fax (___) ___________________________

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway 512 794 5678
Austin, Texas 78730-5039

© National Instruments Corporation G-1 GPIB User Manual
Glossary
ll

n the

ct to

Q
A

acceptor handshake Listeners use this GPIB interface function to receive data, and a
devices use it to receive commands. See source handshake and
handshake.

access board The GPIB board that controls and communicates with the devices o
bus that are attached to it.

ANSI American National Standards Institute.

ASCII American Standard Code for Information Interchange.

asynchronous An action or event that occurs at an unpredictable time with respe
the execution of a program.

automatic serial polling A feature of the GPIB software in which serial polls are executed
automatically by the driver whenever a device asserts the GPIB SR
line. Also called autopolling.

B

base I/O address See I/O address.

BIOS Basic Input/Output System.

board-level function A rudimentary function that performs a single operation.

Prefix Meanings Value

n- nano- 10–9

M- mega- 10
6

for Windows 95/Windows NT

Glossary

and

re
e

g

nal

 one

rom

serting

) or
C

CFE Configuration Enable. The GPIB command which precedes CFGn
is used to place devices into their configuration mode.

CFGn These GPIB commands (CFG1 through CFG15) follow CFE and a
used to configure all devices for the number of meters of cable in th
system so HS488 transfers occur without errors.

CIC Controller-In-Charge. The device that manages the GPIB by sendin
interface messages to other devices.

CPU Central processing unit.

D

DAV Data Valid. One of the three GPIB handshake lines. See handshake.

DCL Device Clear. The GPIB command used to reset the device or inter
functions of all devices. See SDC.

device-level function A function that combines several rudimentary board operations into
function so that the user does not have to be concerned with bus
management or other GPIB protocol matters.

DIO1 through DIO8 The GPIB lines that are used to transmit command or data bytes f
one device to another.

DLL Dynamic link library.

DMA Direct memory access. High-speed data transfer between the GPIB
board and memory that is not handled directly by the CPU. Not
available on some systems. See programmed I/O.

driver Device driver software installed within the operating system.

E

END or END Message A message that signals the end of a data string. END is sent by as
the GPIB End or Identify (EOI) line with the last data byte.

EOI A GPIB line that signals either the last byte of a data message (END
the parallel poll Identify (IDY) message.
GPIB User Manual for Windows 95/Windows NT G-2 © National Instruments Corporation

Glossary

 data

ich

e or

ress
IB

.

ner

e
er

 can
 of
EOS or EOS Byte A 7- or 8-bit end-of-string character that is sent as the last byte of a
message.

EOT End of transmission.

ESB The Event Status bit. Part of the IEEE 488.2-defined status byte wh
is received from a device responding to a serial poll.

F

FIFO First-in-first-out.

G

GET Group Execute Trigger. The GPIB command used to trigger a devic
internal function of an addressed Listener.

GPIB General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE Standard
488.1-1987 and ANSI/IEEE Standard 488.2-1992.

GPIB address The address of a device on the GPIB, composed of a primary add
(MLA and MTA) and perhaps a secondary address (MSA). The GP
board has both a GPIB address and an I/O address.

GPIB board Refers to the National Instruments family of GPIB interface boards

GTL Go To Local. The GPIB command used to place an addressed Liste
in local (front panel) control mode.

H

handshake The mechanism used to transfer bytes from the source handshak
function of one device to the acceptor handshake function of anoth
device. DAV, NRFD, and NDAC, three GPIB lines, are used in an
interlocked fashion to signal the phases of the transfer, so that bytes
be sent asynchronously (for example, without a clock) at the speed
the slowest device.

For more information about handshaking, refer to the ANSI/IEEE
Standard 488.1-1987.
© National Instruments Corporation G-3 GPIB User Manual for Windows 95/Windows NT

Glossary

,

al

th a

sed to

s on

, as
hex Hexadecimal; a number represented in base 16. For example,
decimal 16 is hex 10.

high-level function See device-level function.

HS488 A high-speed data transfer protocol for IEEE 488. This protocol
increases performance for GPIB reads and writes up to 8 Mbytes/s
depending on your system.

Hz Hertz.

I

ibcnt After each NI-488 I/O function, this global variable contains the actu
number of bytes transmitted.

iberr A global variable that contains the specific error code associated wi
function call that failed.

ibsta At the end of each function call, this global variable (status word)
contains status information.

IEEE Institute of Electrical and Electronic Engineers.

interface message A broadcast message sent from the Controller to all devices and u
manage the GPIB.

I/O Input/Output. In this manual, it is the transmission of commands or
messages between the system via the GPIB board and other device
the GPIB.

I/O address The address of the GPIB board from the point of view of the CPU
opposed to the GPIB address of the GPIB board. Also called port
address or board address.

ist An Individual Status bit of the status byte used in the Parallel Poll
Configure function.

K

KB Kilobytes.
GPIB User Manual for Windows 95/Windows NT G-4 © National Instruments Corporation

Glossary

ns or

y

ote

yte

e a

vice
s
 an

 a
L

LAD Listen address. See MLA.

language interface Code that enables an application program that uses NI-488 functio
NI-488.2 routines to access the driver.

Listener A GPIB device that receives data messages from a Talker.

LLO Local Lockout. The GPIB command used to tell all devices that the
may or should ignore remote (GPIB) data messages or local (front
panel) controls, depending on whether the device is in local or rem
program mode.

low-level function A rudimentary board or device function that performs a single
operation.

M

m Meters.

MAV The Message Available bit is part of the IEEE 488.2-defined status b
which is received from a device responding to a serial poll.

MB Megabytes.

memory-resident Resident in RAM.

MLA My Listen Address. A GPIB command used to address a device to b
Listener. It can be any one of the 31 primary addresses.

MSA My Secondary Address. The GPIB command used to address a de
to be a Listener or a Talker when extended (two-byte) addressing i
used. The complete address is a MLA or MTA address followed by
MSA address. There are 31 secondary addresses for a total of
961 distinct listen or talk addresses for devices.

MTA My Talk Address. A GPIB command used to address a device to be
Talker. It can be any one of the 31 primary addresses.

multitasking The concurrent processing of more than one program or task.
© National Instruments Corporation G-5 GPIB User Manual for Windows 95/Windows NT

Glossary

a

an

se

any

hich

fter
N

NDAC Not Data Accepted. One of the three GPIB handshake lines. See
handshake.

NRFD Not Ready For Data. One of the three GPIB handshake lines. See
handshake.

P

parallel poll The process of polling all configured devices at once and reading
composite poll response. See serial poll.

PC Personal computer.

PIO See programmed I/O.

PPC Parallel Poll Configure. It is the GPIB command used to configure
addressed Listener to participate in polls.

PPD Parallel Poll Disable. It is the GPIB command used to disable a
configured device from participating in polls. There are 16 PPD
commands.

PPE Parallel Poll Enable. It is the GPIB command used to enable a
configured device to participate in polls and to assign a DIO respon
line. There are 16 PPE commands.

PPU Parallel Poll Unconfigure. It is the GPIB command used to disable
device from participating in polls.

programmed I/O Low-speed data transfer between the GPIB board and memory in w
the CPU moves each data byte according to program instructions. See
DMA.

R

RAM Random-access memory.

resynchronize The GPIB software and the user application must resynchronize a
asynchronous I/O operations have completed.

RQS Request Service.
GPIB User Manual for Windows 95/Windows NT G-6 © National Instruments Corporation

Glossary

or

m
ing

t a

alkers

vice

CIC

ally

a
 is

IC of
ices
S

s Seconds.

SDC Selected Device Clear. The GPIB command used to reset internal
device functions of an addressed Listener. See DCL.

semaphore An object that maintains a count between zero and some maximu
value, limiting the number of threads that are simultaneously access
a shared resource.

serial poll The process of polling and reading the status byte of one device a
time. See parallel poll.

service request See SRQ.

source handshake The GPIB interface function that transmits data and commands. T
use this function to send data, and the Controller uses it to send
commands. See acceptor handshake and handshake.

SPD Serial Poll Disable. The GPIB command used to cancel an SPE
command.

SPE Serial Poll Enable. The GPIB command used to enable a specific de
to be polled. That device must also be addressed to talk. See SPD.

SRQ Service Request. The GPIB line that a device asserts to notify the
that the device needs servicing.

status byte The IEEE 488.2-defined data byte sent by a device when it is seri
polled.

status word See ibsta .

synchronous Refers to the relationship between the GPIB driver functions and
process when executing driver functions is predictable; the process
blocked until the driver completes the function.

System Controller The single designated Controller that can assert control (become C
the GPIB) by sending the Interface Clear (IFC) message. Other dev
can become CIC only by having control passed to them.
© National Instruments Corporation G-7 GPIB User Manual for Windows 95/Windows NT

Glossary

rom

ng

n

ers.
T

TAD Talk Address. See MTA.

Talker A GPIB device that sends data messages to Listeners.

TCT Take Control. The GPIB command used to pass control of the bus f
the current Controller to an addressed Talker.

timeout A feature of the GPIB driver that prevents I/O functions from hangi
indefinitely when there is a problem on the GPIB.

TLC An integrated circuit that implements most of the GPIB Talker,
Listener, and Controller functions in hardware.

U

ud Unit descriptor. A variable name and first argument of each functio
call that contains the unit descriptor of the GPIB interface board or
other GPIB device that is the object of the function.

UNL Unlisten. The GPIB command used to unaddress any active Listen

UNT Untalk. The GPIB command used to unaddress an active Talker.
GPIB User Manual for Windows 95/Windows NT G-8 © National Instruments Corporation

© National Instruments Corporation I-1 GPIB User Manual fo
Index
9

10
Numbers/Symbols
! (repeat previous function) function, Win32

Interactive Control utility, 6-12
$ filename (execute indirect file) function,

Win32 Interactive Control utility, 6-12
+ (turn ON display) function, Win32 Interactive

Control utility, 6-12
- (turn OFF display) function, Win32 Interactive

Control utility, 6-12
16-bit Windows applications, running

under Windows 95, 3-19
under Windows NT, 3-20

16-bit Windows support files
GPIB for Windows 95, 1-7
GPIB for Windows NT, 1-14

32-bit GPIB driver components
GPIB for Windows 95, 1-6 to 1-7
GPIB for Windows NT, 1-13

A
active Controller. See Controller-in-Charge

(CIC).
addresses. See GPIB addresses.
AllSpoll routine, 7-15, 7-16
application development. See also debugging;

GPIB programming techniques.
accessing GPIB DLL, 3-1
application examples

asynchronous I/O, 2-6 to 2-7
basic communication, 2-2 to 2-3
basic communication with IEEE

488.2-compliant devices,
2-14 to 2-15

clearing and triggering devices,
2-4 to 2-5

end-of-string mode, 2-8 to 2-9
non-controller example, 2-20 to 2-21
parallel polls, 2-18 to 2-19
serial polls using NI-488.2 routines,

2-16 to 2-17
service requests, 2-10 to 2-13
source code files, 2-1 to 2-2

choosing between NI-488 functions and
NI-488.2 routines, 3-2 to 3-3

global variables for checking status,
3-4 to 3-6

count variables (ibcnt and ibcntl), 3-6
error variable (iberr), 3-5 to 3-6
status word (ibsta), 3-4 to 3-5

language-specific instructions, 3-15 to 3-1
Borland C/C++, 3-15
direct entry with C, 3-16 to 3-19

directly accessing gpib-32.dll
exports, 3-17 to 3-19

gpib-32.dll exports, 3-16 to 3-17
Microsoft Visual Basic, 3-16
Microsoft Visual C/C++, 3-15

NI-488 applications
clearing devices, 3-9
communicating with devices,

3-9 to 3-10
flowchart of programming with

device-level functions, 3-8
general steps and examples, 3-9 to 3-
items to include, 3-7
opening devices, 3-9
placing device offline, 3-10
r Windows 95/Windows NT

Index

program shell (illustration), 3-8
reading measurement, 3-10
triggering devices, 3-10
waiting for measurement, 3-10

NI-488 functions, 3-2 to 3-3
advantages, 3-2
board-level functions, 3-3
choosing between NI-488 functions

and NI-488.2 routines, 3-2 to 3-3
device-level functions, 3-2 to 3-3
one device per board, 3-2

NI-488.2 applications, 3-11 to 3-15
communicating with devices,

3-14 to 3-15
determining GPIB address of device,

3-13 to 3-14
flowchart of programming with

routines, 3-12
general steps and examples,

3-13 to 3-15
initialization, 3-13
initializing devices, 3-14
items to include, 3-11
placing device offline, 3-15
program shell (illustration), 3-12
reading measurements, 3-14 to 3-15
triggering instruments, 3-14
waiting for measurements, 3-14

NI-488.2 routines
choosing between NI-488 functions

and NI-488.2 routines, 3-2 to 3-3
using with multiple boards or

devices, 3-3
Win32 Interactive Control utility for

communicating with devices, 3-6
applications, existing. See existing

applications, running.
asynchronous event notification in Win32

applications, 7-4 to 7-9
calling ibnotify function, 7-4 to 7-5
ibnotify programming example, 7-5 to 7-9

asynchronous I/O application example,
2-6 to 2-7

ATN (attention) line (table), 1-3
ATN status word condition

bit position, hex value, and type
(table), 3-5

description, A-4
automatic serial polling. See serial polling.
auxiliary functions, Win32 Interactive Control

utility, 6-12

B
board functions. See NI-488 functions.
Borland C/C++

language interface files
GPIB for Windows 95, 1-8
GPIB for Windows NT, 1-14

programming instructions, 3-15
borlandc_gpib-32.obj file, 1-8, 1-14
buffer option function, Win32 Interactive

Control utility, 6-12
bulletin board support, E-1

C
C language direct entry for application

development, 3-16 to 3-19
directly accessing gpib-32.dll exports,

3-17 to 3-19
gpib-32.dll exports, 3-16 to 3-17

cable length for high-speed data transfers,
7-2, 7-3

CIC. See Controller-in-Charge (CIC).
CIC Protocol, 7-11
CIC status word condition

bit position, hex value, and type
(table), 3-5

description, A-4
clearing and triggering devices, example,

2-4 to 2-5
GPIB User Manual for Windows 95/Windows NT I-2 © National Instruments Corporation

Index

1

CMPL status word condition
bit position, hex value, and type

(table), 3-5
description, A-3

common questions. See troubleshooting and
common questions.

communication application examples
basic communication, 2-2 to 2-3

with IEEE 488.2-compliant devices,
2-14 to 2-15

communication errors, 4-4
repeat addressing, 4-4
termination method, 4-4

configuration, 1-4 to 1-6. See also GPIB
Configuration utility; Win32 Interactive
Control utility.

controlling more than one board, 1-5
linear and star system configuration

(illustration), 1-4
requirements, 1-5 to 1-6
system configuration effects on

HS488, 7-3
configuration errors, 4-3
Configure (CFGn) message, 7-3
Configure Enable (CFE) message, 7-3
Controller-in-Charge (CIC)

active Controller as CIC, 1-1
making GPIB board CIC, 7-11
System Controller as, 1-1

Controllers
definition, 1-1
emulation of non-controller GPIB

(example), 2-20 to 2-21
idle Controller, 1-2
monitoring by Talker/Listener

applications, 7-12
System Controller, 1-2

count, in Win32 Interactive Control
utility, 6-14

count variables (ibcnt and ibcntl), 3-6
customer communication, xvi, E-1 to E-2

D
data lines, 1-2
data transfers

high-speed (HS488), 7-2 to 7-3
enabling, 7-2 to 7-3
system configuration effects, 7-3

terminating, 7-1 to 7-2
DAV (data valid) line (table), 1-3
DCAS status word condition

bit position, hex value, and type
(table), 3-5

description, A-5
Talker/Listener applications, 7-12
waiting for messages from

Controller, 7-12
debugging. See also NI Spy utility;

troubleshooting and common questions;
Win32 Interactive Control utility.

communication errors, 4-4
repeat addressing, 4-4
termination method, 4-4

configuration errors, 4-3
global status variables, 4-1
GPIB error codes (table), 4-2 to 4-3, B-1
NI Spy utility, 4-1. See also NI Spy

utility.
other errors, 4-4
timing errors, 4-3 to 4-4
Win32 Interactive Control utility,

4-1 to 4-2
decl-32.h file

Borland C/C++ language interface file,
1-8, 1-14

Microsoft C/C++ language interface file,
1-8, 1-14

DevClear routine, 3-14
device functions. See NI-488 functions.
Device Manager device status codes,

troubleshooting, C-2 to C-3
device-level calls and bus management, 7-1
© National Instruments Corporation I-3 GPIB User Manual for Windows 95/Windows NT

Index

direct access to GPIB DLL, 3-1
documentation

conventions used in manual, xv-xvi
how to use manual set, xiii -xiv
organization of manual, xiv-xv
related documentation, xvi

DOS applications, running
under Windows 95, 3-19 to 3-20
under Windows NT, 3-20 to 3-21

DOS support files
GPIB for Windows 95, 1-7
GPIB for Windows NT, 1-14

drivers
configuring, 4-3
driver and driver utilities for GPIB

software
GPIB for Windows 95, 1-6 to 1-7
GPIB for Windows NT, 1-13

DTAS status word condition
bit position, hex value, and type

(table), 3-5
description, A-5
Talker/Listener applications, 7-12
waiting for messages from

Controller, 7-12
dynamic link library, GPIB. See GPIB DLL.

E
EABO error code

definition (table), 4-2
description, B-5

EADR error code
definition (table), 4-2
description, B-4

EARG error code
definition (table), 4-2
description, B-4

EBUS error code
definition (table), 4-2

description, B-7 to B-8
ECAP error code

definition (table), 4-2
description, B-7

ECIC error code
definition (table), 4-2
description, B-2 to B-3

EDMA error code
definition (table), 4-2
description, B-6

EDVR error code
definition (table), 4-2
description, B-2
troubleshooting, C-1 to C-2

EFSO error code
definition (table), 4-2
description, B-7

electronic support services, E-1 to E-2
e-mail support, E-2
END status word condition

bit position, hex value, and type
(table), 3-5

description, A-2
end-of-string character. See EOS.
ENEB error code

definition (table), 4-2
description, B-5 to B-6

ENOL error code
definition (table), 4-2
description, B-3

EOI (end or identify) line
purpose (table), 1-4
termination of data transfers, 7-1

EOIP error code
definition (table), 4-2
description, B-6 to B-7

EOS
configuring EOS mode, 7-1
end-of-string mode application example,

2-8 to 2-9
GPIB User Manual for Windows 95/Windows NT I-4 © National Instruments Corporation

Index

EOS comparison method, 7-1
EOS read method, 7-2
EOS write method, 7-1

ERR status word condition
bit position, hex value, and type

(table), 3-5
description, A-2

error codes and solutions
EABO, B-5
EADR, B-4
EARG, B-4
EBUS, B-7 to B-8
ECAP, B-7
ECIC, B-2 to B-3
EDMA, B-6
EDVR, B-2
EFSO, B-7
ENEB, B-5 to B-6
ENOL, B-3
EOIP, B-6 to B-7
ESAC, B-5
ESRQ, B-8 to B-9
ESTB, B-8
ETAB, B-9
GPIB error codes (table), 4-2 to 4-3, B-1

error conditions
communication errors, 4-4

repeat addressing, 4-4
termination method, 4-4

configuration errors, 4-3
timing errors, 4-3 to 4-4
Win32 Interactive Control utility error

information, 6-13
error variable (iberr), 3-6
ESAC error code

definition (table), 4-2
description, B-5

ESRQ error code
definition (table), 4-3
description, B-8 to B-9

ESTB error code
definition (table), 4-2
description, B-8

ETAB error code
definition (table), 4-3
description, B-9

event notification. See asynchronous event
notification in Win32 applications.

Event Status bit (ESB), 7-13
execute function n times (n *) function, Win32

Interactive Control utility, 6-12
execute indirect file ($) function, Win32

Interactive Control utility, 6-12
execute previous function n times (n * !)

function, Win32 Interactive Control
utility, 6-12

existing applications, running
Windows 95

DOS GPIB applications, 3-19 to 3-20
Win16 and Win32 GPIB

applications, 3-19
Windows NT

DOS GPIB applications, 3-20 to 3-21
Win16 and Win32 GPIB

applications, 3-20

F
fax and telephone technical support, E-2
Fax-on-Demand support, E-2
FindLstn routine, 3-13
FindRQS routine, 7-15, 7-16
FTP support, E-1
functions. See auxiliary functions, Win32

Interactive Control utility; NI-488
functions.

G
General Purpose Interface Bus. See GPIB.
© National Instruments Corporation I-5 GPIB User Manual for Windows 95/Windows NT

Index

global variables, 3-4 to 3-6
count variables (ibcnt and ibcntl), 3-6
debugging applications, 4-1
error variable (iberr), 3-6
status word (ibsta), 3-4 to 3-5
writing multithread Win32 GPIB

applications, 7-9 to 7-10
GPIB

configuration, 1-4 to 1-6. See also GPIB
Configuration utility; Win32
Interactive Control utility.

controlling more than one
board, 1-5
linear and star system configuration

(illustration), 1-4
requirements, 1-5 to 1-6
system configuration effects on

HS488, 7-3
definition, 1-1
overview, 1-1
sending messages across, 1-2 to 1-3

data lines, 1-2
handshake lines, 1-3
interface management lines,

1-3 to 1-4
Talkers, Listeners, and Controllers, 1-1

GPIB addresses
address bit configuration

(illustration), 1-2
listen address, 1-2
primary, 1-2
purpose, 1-2
repeat addressing, 4-4
secondary, 1-2
syntax in Win32 Interactive Control

utility, 6-5
talk address, 1-2

GPIB Configuration utility
overview, 8-1
Windows 95, 8-2 to 8-4

Windows NT, 8-4 to 8-5
GPIB DLL

choosing access method, 3-1
direct entry access, 3-1

GPIB programming techniques. See also
application development.

asynchronous event notification in Win32
applications, 7-4 to 7-9

calling ibnotify function, 7-4 to 7-5
ibnotify programming example,

7-5 to 7-9
device-level calls and bus

management, 7-11
high-speed data transfers (HS488),

7-2 to 7-3
enabling HS488, 7-2 to 7-3
system configuration effects, 7-3

parallel polling, 7-17 to 7-19
implementing, 7-17 to 7-19

with NI-488 functions, 7-17 to
7-18

with NI-488.2 routines, 7-19
serial polling, 7-12 to 7-16

automatic serial polling, 7-13 to 7-14
autopolling and interrupts, 7-14
stuck SRQ state, 7-14

service requests
from IEEE 488 devices,

7-12 to 7-13
from IEEE 488.2 devices, 7-13

SRQ and serial polling
with NI-488 device functions,

7-14 to 7-15
with NI-488.2 routines,

7-15 to 7-16
Talker/Listener applications, 7-12
termination of data transfers, 7-1 to 7-2
waiting for GPIB conditions, 7-4
writing multithread Win32 GPIB

applications, 7-9 to 7-11
GPIB User Manual for Windows 95/Windows NT I-6 © National Instruments Corporation

Index

3

GPIB software, 1-6 to 1-17. See also
application development; NI-488 functions;
NI-488.2 routines.

Windows 95, 1-6 to 1-13
16-bit Windows support files, 1-7
Borland C/C++ language interface

files, 1-8
C language interface files, 1-8
DOS support files, 1-7
GPIB driver and driver utilities,

1-6 to 1-7
how GPIB software works with

Windows 95, 1-9
Microsoft C/C++ language interface

files, 1-8
Microsoft Visual Basic language

interface files, 1-8
sample application files, 1-8
troubleshooting. See troubleshooting

and common questions.
uninstalling GPIB hardware,

1-10 to 1-11
uninstalling GPIB software,

1-12 to 1-13
Windows NT, 1-13 to 1-17

Borland C/C++ language interface
files, 1-14

DOS and 16-bit Windows support
files, 1-14

GPIB driver and driver utilities, 1-13
how GPIB software works with

Windows NT, 1-15 to 1-16
Microsoft C/C++ language interface

files, 1-14
Microsoft Visual Basic language

interface files, 1-15
reloading GPIB driver, 1-17
sample application files, 1-15
troubleshooting. See troubleshooting

and common questions.
unloading GPIB driver, 1-17

gpib.dll file. See also GPIB DLL.
Windows 95, 1-7, 1-9
Windows NT, 1-14, 1-15

gpib-32.dll exports
accessing directly, 3-17 to 3-19
direct entry with C, 3-16 to 3-17

gpib-32.dll file
Windows 95, 1-6, 1-7, 1-9
Windows NT, 1-13, 1-15

gpib32ft.dll file, 1-7, 1-9
gpib-32.obj file

Windows 95, 1-8
Windows NT, 1-14

gpibdos.exe file, 1-7
gpibdosk.vxd file, 1-7
gpib-nt.com file, 1-14, 1-15
gpib-vdd.dll file, 1-14, 1-15

H
handshake lines, 1-3
help (display Win32 Interactive Control utility

online help) function (table), 6-12
help for NI Spy utility, 5-2
help option function, Win32 Interactive

Control utility, 6-12
high-speed data transfers (HS488), 7-2 to 7-

enabling HS488, 7-2 to 7-3
setting cable length, 7-2
system configuration effects, 7-3

HS488. See high-speed data transfers
(HS488).

HSS488 configuration message, 7-3

I
ibask function, 7-3
ibclr function

clearing devices, 3-9
© National Instruments Corporation I-7 GPIB User Manual for Windows 95/Windows NT

Index
using in Win32 Interactive Control utility
(example), 6-2

ibcnt and ibcntl variables, 3-6
ibconfig function

configuring GPIB board as CIC, 7-2
configuring GPIB driver, 4-3
determining assertion of EOI line, 7-2
enabling autopolling, 7-13
enabling high-speed data transfers,

7-2 to 7-3
modifying GPIB driver configuration

dynamically (note), 4-3
ibdev function

opening devices, 3-9
using in Win32 Interactive Control utility

(example), 6-2
ibeos function, 7-1
ibeot function, 7-1
iberr error variable, 3-6
ibnotify function

asynchronous event notification in Win32
GPIB applications (example),
7-5 to 7-9

calling, 7-4 to 7-5
ibonl function

placing device offline, 3-10, 3-15
using in Win32 Interactive Control utility

(example), 6-3 to 6-4
ibppc function

conducting parallel polls, 7-17 to 7-18
unconfiguring device for parallel

polling, 7-18
ibrd function

reading measurement from device, 3-10
using in Win32 Interactive Control utility

(example), 6-3
ibrpp function, 7-18
ibrsp function

automatic serial polling, 7-13
SRQ and serial polling, 7-14

ibsta. See status word (ibsta).

ibtrg function
triggering devices, 3-10
using in Win32 Interactive Control utility

(example), 6-3
ibwait function

device-level calls and bus
management, 7-11

Talker/Listener applications, 7-12
terminating stuck SRQ state, 7-14
waiting for GPIB conditions, 7-4
waiting for measurement, 3-10

ibwrt function
acquiring measurement, 3-10
using in Win32 Interactive Control utility

(example), 6-3
IFC (interface clear) line, 1-3
interface management lines, 1-3 to 1-4
interrupts and autopolling, 7-14

L
LACS status word condition

bit position, hex value, and type
(table), 3-5

description, A-5
Talker/Listener applications, 7-12

listen address, setting, 1-2
Listeners, 1-1. See also Talker/Listener

applications.
LOK status word condition

bit position, hex value, and type
(table), 3-5

description, A-3

M
manual. See documentation.
Message Available (MAV) bit, 7-13
messages, sending across GPIB, 1-2 to 1-4

data lines, 1-2
handshake lines, 1-3
GPIB User Manual for Windows 95/Windows NT I-8 © National Instruments Corporation

Index

5

5

interface management lines, 1-3 to 1-4
Microsoft C/C++ language interface files

GPIB for Windows 95, 1-8
GPIB for Windows NT, 1-14

Microsoft Visual Basic
language interface files

GPIB for Windows 95, 1-8
GPIB for Windows NT, 1-15

programming instructions, 3-16
Microsoft Visual C/C++ programming

instructions, 3-15
multithread Win32 GPIB applications,

writing, 7-9 to 7-11

N
n * ! (execute previous function n times)

function, Win32 Interactive Control
utility, 6-12

n * (execute function n times) function, Win32
Interactive Control utility, 6-12

NDAC (not data accepted) line (table), 1-3
NI Spy utility

debugging applications, 4-1
exiting, 5-3 to 5-4
locating errors, 5-3
main window (illustration), 5-2
online help, 5-2
overview, 5-1
performance considerations, 5-4
starting, 5-2
viewing properties for recorded calls, 5-3

NI-488 applications, programming. See also
application development.

acquiring measurement, 3-9 to 3-10
clearing devices, 3-9
flowchart of programming with

device-level functions, 3-8
general steps and examples, 3-9 to 3-10
items to include, 3-7
opening devices, 3-9

placing device offline, 3-10
program shell (illustration), 3-8
reading measurement, 3-10
triggering devices, 3-10
waiting for measurement, 3-10

NI-488 functions
parallel polling, 7-17 to 7-18
programming considerations

advantages of using, 3-2
board-level functions, 3-3
choosing between functions and

routines, 3-2 to 3-3
device-level functions, 3-2 to 3-3
when to use functions, 3-2

serial polling, 7-14 to 7-15
using in Win32 Interactive Control utility

examples, 6-2 to 6-4
syntax, 6-4 to 6-5

NI-488.2 applications, programming
communicating with devices, 3-14 to 3-1
determining GPIB address of device,

3-13 to 3-14
flowchart of programming with

routines, 3-12
general steps and examples, 3-13 to 3-1
initialization, 3-13
initializing devices, 3-14
items to include, 3-11
placing board offline, 3-15
program shell (illustration), 3-12
reading measurement, 3-15
triggering instruments, 3-14
waiting for measurement, 3-14

NI-488.2 routines
parallel polling, 7-19
programming considerations

choosing between functions and
routines, 3-2 to 3-3

using with multiple boards or
devices, 3-3
© National Instruments Corporation I-9 GPIB User Manual for Windows 95/Windows NT

Index

serial polling, 7-15 to 7-16
serial polling examples

AllSpoll, 7-16
FindRQS, 7-16

Win32 Interactive Control utility
syntax, 6-5

niglobal.bas file
Windows 95, 1-8
Windows NT, 1-15

NRFD (not ready for data) line (table), 1-3
number syntax, in Win32 Interactive Control

utility, 6-4

O
online help for NI Spy utility, 5-2

P
parallel polling, 7-17 to 7-19

application example, 2-18 to 2-19
implementing, 7-17 to 7-19

with NI-488 functions, 7-17 to 7-18
with NI-488.2 routines, 7-19

PPoll routine, 7-19
PPollConfig routine, 7-19
PPollUnconfig routine, 7-19
primary GPIB address, 1-2
problem solving. See debugging;

troubleshooting and common questions.
programming. See application development;

debugging; GPIB programming techniques.

Q
q function, Win32 Interactive Control

utility, 6-12

R
readme.txt file

Borland C/C++ language interface files,
1-8, 1-14

Microsoft C/C++ language interface files,
1-8, 1-14

Microsoft Visual Basic language interface
files, 1-8, 1-15

GPIB driver and driver utilities, 1-6 to
1-7, 1-13

ReadStatusByte routine, 3-14, 7-15
Receive routine, 3-15
reloading GPIB driver for Windows NT, 1-17
REM status word condition

bit position, hex value, and type
(table), 3-5

description, A-4
repeat addressing, 4-4
repeat previous function (!) function, Win32

Interactive Control utility, 6-12
requesting service. See service requests.
routines. See NI-488.2 routines.
RQS status word condition

bit position, hex value, and type
(table), 3-5

description, A-3
running existing applications. See existing

applications, running.

S
sample application files

GPIB for Windows 95, 1-8
GPIB for Windows NT, 1-15

secondary GPIB address, 1-2
Send routine, 3-14
SendIFC routine, 3-13
GPIB User Manual for Windows 95/Windows NT I-10 © National Instruments Corporation

Index
serial polling, 7-12 to 7-16
application example using NI-488.2

routines, 2-16 to 2-17
automatic serial polling, 7-13 to 7-14

autopolling and interrupts, 7-14
stuck SRQ state, 7-14

service requests
from IEEE 488 devices, 7-12 to 7-13
from IEEE 488.2 devices, 7-13

SRQ and serial polling
with NI-488 device functions,

7-14 to 7-15
with NI-488.2 routines, 7-15 to 7-16

service requests
application examples, 2-10 to 2-13
serial polling

IEEE 488 devices, 7-12 to 7-13
IEEE 488.2 devices, 7-13

stuck SRQ state, 7-14
set 488.2 v function, Win32 Interactive

Control utility, 6-12
set udname function, Win32 Interactive

Control utility, 6-12
setting up your system. See configuration.
software. See GPIB software.
SRQ (service request) line

application examples, 2-10 to 2-13
purpose (table), 1-4
serial polling

automatic serial polling, 7-13
with NI-488 device functions,

7-14 to 7-15
with NI-488.2 routines, 7-15 to 7-16

stuck SRQ state, 7-14
SRQI status word condition

bit position, hex value, and type
(table), 3-5

description, A-3

status word (ibsta), 3-4 to 3-5
ATN, A-4
CIC, A-4
CMPL, A-3
DCAS, 7-12, A-5
DTAS, 7-12, A-5
END, A-2
ERR, A-2
LACS, 7-12, A-5
LOK, A-3
programming considerations, 3-4 to 3-5
REM, A-4
RQS, A-3
SRQI, A-3
status word layout (table), 3-5, A-1
TACS, 7-12, A-4
TIMO, A-2
Win32 Interactive Control utility

example, 6-13
string syntax, in Win32 Interactive Control

utility, 6-4 to 6-5
stuck SRQ state, 7-14
System Controller as

Controller-in-Charge, 1-1

T
TACS status word condition

bit position, hex value, and type
(table), 3-5

description, A-4
Talker/Listener applications, 7-12

talk address, setting, 1-2
Talker/Listener applications, 7-12
Talkers, 1-1
technical support, E-1 to E-2
termination methods, errors caused by, 4-4
termination of data transfers, 7-1 to 7-2
© National Instruments Corporation I-11 GPIB User Manual for Windows 95/Windows NT

Index
TestSRQ routine, 7-15
timing errors, 4-3 to 4-4
TIMO status word condition

bit position, hex value, and type
(table), 3-5

description, A-2
Trigger routine, 3-14
triggering devices, example, 2-4 to 2-5
troubleshooting and common questions. See

also debugging; NI Spy utility; Win32
Interactive Control utility.

Windows 95, C-1 to C-6
common questions, C-3 to C-6
Device Manager device status code,

C-2 to C-3
EDVR error conditions, C-1 to C-2

Windows NT, D-1 to D-4
common questions, D-2 to D-4
examining NT system log using

Event Viewer, D-2
using diagnostic tools, D-1 to D-2
verifying GPIB installation,

D-1 to D-2
turn OFF display (-) function, Win32

Interactive Control utility, 6-12
turn ON display (+) function, Win32

Interactive Control utility, 6-12

U
uninstalling GPIB hardware from

Windows 95, 1-10 to 1-11
uninstalling GPIB software from Windows 95,

1-12 to 1-13
unloading GPIB driver for Windows NT, 1-17

V
vbib-32.bas file

Windows 95, 1-8
Windows NT, 1-15

Visual Basic. See Microsoft Visual Basic.

W
wait function. See ibwait function.
WaitSRQ routine

conducting serial polls, 7-15
waiting for measurement, 3-14

Win32 Interactive Control utility
auxiliary functions (table), 6-12
communicating with devices, 3-6
count, 6-14
debugging applications, 4-1 to 4-2
error information, 6-13
getting started, 6-1 to 6-4
NI-488 function examples, 6-2 to 6-4
overview, 6-1
programming considerations, 3-6
status word, 6-13
syntax, 6-4 to 6-12

addresses, 6-5
board-level functions (table),

6-8 to 6-9
device-level functions (table),

6-6 to 6-7
NI-488 functions (table), 6-6 to 6-9
NI-488.2 routines, 6-10 to 6-11
numbers, 6-4
strings, 6-4 to 6-5
GPIB User Manual for Windows 95/Windows NT I-12 © National Instruments Corporation

	GPIB User Manual for Windows 95 and Windows NT
	Support
	Internet
	Bulletin Board
	Fax-on-Demand
	Telephone (USA)
	International Offices
	Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	Warning

	Contents
	About This Manual
	How to Use the Manual Set
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	GPIB Overview
	Talkers, Listeners, and Controllers
	Controller-In-Charge and System Controller
	GPIB Addressing
	Sending Messages across the GPIB
	Data Lines
	Handshake Lines
	Interface Management Lines

	Setting up and Configuring Your System
	Controlling More Than One Board
	Configuration Requirements

	GPIB Software for Windows 95
	GPIB Software for Windows 95 Components
	GPIB Driver and Driver Utilities
	16-Bit Windows Support Files
	DOS Support Files
	Microsoft C/C++ Language Interface Files
	Borland C/C++ Language Interface Files
	Microsoft Visual Basic Language Interface Files
	Sample Application Files

	How the GPIB Software Works with Windows 95
	Uninstalling the GPIB Hardware from Windows 95
	Uninstalling the GPIB Software for Windows 95

	GPIB Software for Windows NT
	GPIB Software for Windows NT Components
	GPIB Driver and Driver Utilities
	DOS and 16-Bit Windows Support Files
	Microsoft C/C++ Language Interface Files
	Borland C/C++ Language Interface Files
	Microsoft Visual Basic Language Interface Files
	Sample Application Files

	How the GPIB Software Works with Windows NT
	Unloading and Reloading the GPIB Driver for Window...

	Chapter 2 Application Examples
	Example 1: Basic Communication
	Example 2: Clearing and Triggering Devices
	Example 3: Asynchronous I/O
	Example 4: End-of-String Mode
	Example 5: Service Requests
	Example 6: Basic Communication with IEEE 488.2-Com...
	Example 7: Serial Polls Using NI-488.2 Routines
	Example 8: Parallel Polls
	Example 9: Non-Controller Example

	Chapter 3 Developing Your Application
	Choosing Your Programming Methodology
	Choosing a Method to Access the GPIB Driver
	NI-488.2M Language Interfaces
	Direct Entry Access

	Choosing between NI-488 Functions and NI-488.2 Rou...
	Using NI-488 Functions: One Device for Each Board
	Using NI-488.2 Routines: Multiple Boards and/or Mu...

	Checking Status with Global Variables
	Status Word (ibsta)
	Error Variable (iberr)
	Count Variables (ibcnt and ibcntl)

	Using Win32 Interactive Control to Communicate wit...
	Programming Model for NI-488 Applications
	Items to Include
	NI-488 Program Shell
	NI-488 General Program Steps and Examples
	Step 1. Open a Device
	Step 2. Clear the Device
	Step 3. Communicate with the Device
	Step 4. Place the Device Offline before Exiting Yo...

	Programming Model for NI-488.2 Applications
	Items to Include
	NI-488.2 Program Shell
	NI-488.2 General Program Steps and Examples
	Step 1. Initialization
	Step 2. Determine the GPIB Address of Your Device
	Step 3. Initialize the Device
	Step 4. Communicate with the Device
	Step 5. Place the Device Offline before Exiting Yo...

	Language-Specific Programming Instructions
	Microsoft Visual C/C++ (Version 2.0 or Higher)
	Borland C/C++ (Version 4.0 or Higher)
	Visual Basic (Version 4.0 or Higher)
	Direct Entry with C
	gpib-32.dll Exports
	Directly Accessing the gpib-32.dll Exports

	Windows 95: Running Existing GPIB Applications
	Running Existing Win32 and Win16 GPIB Applications...
	Running Existing DOS GPIB Applications

	Windows NT: Running Existing GPIB Applications
	Running Existing Win32 and Win16 GPIB Applications...
	Running Existing DOS GPIB Applications

	Chapter 4 Debugging Your Application
	NI Spy
	Global Status Variables
	Win32 Interactive Control
	GPIB Error Codes
	Configuration Errors
	Timing Errors
	Communication Errors
	Repeat Addressing
	Termination Method

	Other Errors

	Chapter 5 NI Spy Utility
	Overview
	Starting NI Spy
	Using the NI Spy Online Help
	Locating Errors with NI Spy
	Viewing Properties for Recorded Calls
	Exiting NI Spy
	Performance Considerations

	Chapter 6 Win32 Interactive Control Utility
	Overview
	Getting Started with Win32 Interactive Control
	Win32 Interactive Control Syntax
	Number Syntax
	String Syntax
	Address Syntax

	Win32 Interactive Control Commands
	Status Word
	Error Information
	Count Information

	Chapter 7 GPIB Programming Techniques
	Termination of Data Transfers
	High-Speed Data Transfers (HS488)
	Enabling HS488
	System Configuration Effects on HS488

	Waiting for GPIB Conditions
	Asynchronous Event Notification in Win32 GPIB Appl...
	Calling the ibnotify Function
	ibnotify Programming Example

	Writing Multithreaded Win32 GPIB Applications
	Device-Level Calls and Bus Management
	Talker/Listener Applications
	Serial Polling
	Service Requests from IEEE 488 Devices
	Service Requests from IEEE 488.2 Devices
	Automatic Serial Polling
	Stuck SRQ State
	Autopolling and Interrupts

	SRQ and Serial Polling with NI-488 Device Function...
	SRQ and Serial Polling with NI-488.2 Routines
	Example 1: Using FindRQS
	Example 2: Using AllSpoll

	Parallel Polling
	Implementing a Parallel Poll
	Parallel Polling with NI-488 Functions
	Parallel Polling with NI-488.2 Routines

	Chapter 8 GPIB Configuration Utility
	Overview
	Windows 95: Configuring the GPIB Software
	Windows NT: Configuring the GPIB Software

	Appendix A Status Word Conditions
	Appendix B Error Codes and Solutions
	Appendix C Windows 95: Troubleshooting and Common Questions
	Appendix D Windows NT: Troubleshooting and Common Questions
	Appendix E Customer Communication
	Glossary
	Index
	Figures
	Figure 1-1. GPIB Address Bits
	Figure 1-2. Linear and Star System Configuration
	Figure 1-3. Example of Multiboard System Configura...
	Figure 1-4. How the GPIB Software Works with Windo...
	Figure 1-5. Selecting an Interface to Remove from ...
	Figure 1-6. Add/Remove Programs Properties Dialog ...
	Figure 1-7. How the GPIB Software Works with Windo...
	Figure 2-1. Program Flowchart for Example 1
	Figure 2-2. Program Flowchart for Example 2
	Figure 2-3. Program Flowchart for Example 3
	Figure 2-4. Program Flowchart for Example 4
	Figure 2-5. Program Flowchart for Example 5
	Figure 2-6. Program Flowchart for Example 5
	Figure 2-7. Program Flowchart for Example 6
	Figure 2-8. Program Flowchart for Example 7
	Figure 2-9. Program Flowchart for Example 8
	Figure 2-10. Program Flowchart for Example 9
	Figure 3-1. General Program Shell Using NI-488 Dev...
	Figure 3-2. General Program Shell Using NI-488.2 R...
	Figure 5-1. NI Spy Main Window
	Figure 5-2. NI Spy Buffer Tab for Device-Level ibw...
	Figure 8-1. GPIB Settings Tab for the AT-GPIB/TNT ...
	Figure 8-2. Device Templates Tab for the Logical D...
	Figure 8-3. Main GPIB Configuration Utility Dialog...

	Tables
	Table 1-1. GPIB Handshake Lines
	Table 1-2. GPIB Interface Management Lines
	Table 3-1. Status Word Layout
	Table 4-1. GPIB Error Codes
	Table 6-1. Syntax for Device-Level NI-488 Function...
	Table 6-2. Syntax for Board-Level NI-488 Functions...
	Table 6-3. Syntax for NI-488.2 Routines in Win32 I...
	Table 6-4. Auxiliary Functions in Win32 Interactiv...

